Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
|
|
---|---|---|
Page(s) | 1155 - 1162 | |
Section | Vieillissement physiologique et pathologique | |
DOI | https://doi.org/10.1051/medsci/2020223 | |
Publié en ligne | 9 décembre 2020 |
- Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell 2013 ; 153 : 1194–1217. [CrossRef] [PubMed] [Google Scholar]
- Giangreco A, Qin M, Pintar JE, Watt FM. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell 2008 ; 7 : 250–259. [CrossRef] [PubMed] [Google Scholar]
- Ge Y, Miao Y, Gur-Cohen S, et al. The aging skin microenvironment dictates stem cell behavior. Proc Natl Acad Sci USA 2020; 117 : 5339–50. [CrossRef] [Google Scholar]
- Lehmann M, Canatelli-Mallat M, Chiavellini P, Goya RG. A hierarchical model for the control of epigenetic aging in mammals. Ageing Res Rev 2020; 62 : 101134. [CrossRef] [PubMed] [Google Scholar]
- Muther C, Jobeili L, Garion M, et al. An expression screen for aged-dependent microRNAs identifies miR-30a as a key regulator of aging features in human epidermis. Aging (Albany NY) 2017 ; 9 : 2376–2396. [CrossRef] [Google Scholar]
- Chevalier F, Rorteau J, Lamartine J. microRNAs in the functional defects of skin aging. In: IntechOpen (ed). Non-coding RNAs 2020. [Google Scholar]
- Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 2020; 59 : 101036. [CrossRef] [PubMed] [Google Scholar]
- Vermeij WP, Alia A, Backendorf C. ROS quenching potential of the epidermal cornified cell envelope. J Invest Dermatol 2011 ; 131 : 1435–1441. [CrossRef] [PubMed] [Google Scholar]
- Haydont V, Bernard BA, Fortunel NO. Age-related evolutions of the dermis: clinical signs, fibroblast and extracellular matrix dynamics. Mech Ageing Dev 2019 ; 177 : 150–156. [CrossRef] [PubMed] [Google Scholar]
- Shin JW, Kwon SH, Choi JY, et al. Molecular mechanisms of dermal aging and antiaging approaches. Int J Mol Sci 2019 ; 20 : [Google Scholar]
- Lago JC, Puzzi MB. The effect of aging in primary human dermal fibroblasts. PLoS One 2019 ; 14 : e0219165. [CrossRef] [Google Scholar]
- Gruber F, Kremslehner C, Eckhart L, Tschachler E. Cell aging and cellular senescence in skin aging - Recent advances in fibroblast and keratinocyte biology. Exp Gerontol 2020; 130 : 110780. [CrossRef] [PubMed] [Google Scholar]
- Lopes-Paciencia S, Saint-Germain E, Rowell MC, et al. The senescence-associated secretory phenotype and its regulation. Cytokine 2019 ; 117 : 15–22. [CrossRef] [Google Scholar]
- Terlecki-Zaniewicz L, Lammermann I, Latreille J, et al. Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype. Aging (Albany NY) 2018 ; 10 : 1103–1132. [CrossRef] [Google Scholar]
- Terlecki-Zaniewicz L, Pils V, Bobbili MR, et al. Extracellular vesicles in human skin: cross-talk from senescent fibroblasts to keratinocytes by miRNAs. J Invest Dermatol 2019 ; 139 : 2425–36.e5. [CrossRef] [PubMed] [Google Scholar]
- Choi EJ, Kil IS, Cho EG. Extracellular vesicles derived from senescent fibroblasts attenuate the dermal effect on keratinocyte differentiation. Int J Mol Sci 2020; 21. [Google Scholar]
- Cracowski JL, Roustit M. Human skin microcirculation. compr physiol 2020; 10 : 1105–54. [CrossRef] [Google Scholar]
- Bentov I, Reed MJ. the effect of aging on the cutaneous microvasculature. Microvasc Res 2015; 100 : 25–31. [CrossRef] [Google Scholar]
- Johnson JM, Minson CT, Kellogg DL, Jr.. Cutaneous vasodilator and vasoconstrictor mechanisms in temperature regulation. Compr Physiol 2014 ; 4 : 33–89. [CrossRef] [Google Scholar]
- Matz RL, Andriantsitohaina R. Age-related endothelial dysfunction: potential implications for pharmacotherapy. Drugs Aging 2003 ; 20 : 527–550. [CrossRef] [Google Scholar]
- Cau SB, Carneiro FS, Tostes RC. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front Physiol 2012 ; 3 : 218. [PubMed] [Google Scholar]
- Nusgens BV, Humbert P, Rougier A, et al. Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J Invest Dermatol 2001 ; 116 : 853–859. [CrossRef] [PubMed] [Google Scholar]
- Payne GW. Effect of inflammation on the aging microcirculation: impact on skeletal muscle blood flow control. Microcirculation 2006 ; 13 : 343–352. [CrossRef] [PubMed] [Google Scholar]
- El Assar M, Angulo J, Vallejo S, et al. Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol 2012 ; 3 : 132. [CrossRef] [PubMed] [Google Scholar]
- Gaubert ML, Sigaudo-Roussel D, Tartas M, et al. Endothelium-derived hyperpolarizing factor as an in vivo back-up mechanism in the cutaneous microcirculation in old mice. J Physiol 2007 ; 585 : 617–626. [CrossRef] [PubMed] [Google Scholar]
- Fromy B, Lingueglia E, Sigaudo-Roussel D, et al. Asic3 is a neuronal mechanosensor for pressure-induced vasodilation that protects against pressure ulcers. Nat Med 2012 ; 18 : 1205–1207. [CrossRef] [PubMed] [Google Scholar]
- Fouchard M, Misery L, Le Garrec R, et al. Alteration of pressure-induced vasodilation in aging and diabetes, a neuro-vascular damage. Front Physiol 2019 ; 10 : 862. [CrossRef] [PubMed] [Google Scholar]
- Fromy B, Sigaudo-Roussel D, Gaubert-Dahan ML, et al. Aging-associated sensory neuropathy alters pressure-induced vasodilation in humans. J Invest Dermatol 2010 ; 130 : 849–855. [CrossRef] [PubMed] [Google Scholar]
- Gaubert-Dahan ML, Castro-Lionard K, Blanchon MA, Fromy B. Severe sensory neuropathy increases risk of heel pressure ulcer in older adults. J Am Geriatr Soc 2013 ; 61 : 2050–2052. [CrossRef] [PubMed] [Google Scholar]
- Romana-Souza B, Silva-Xavier W, Monte-Alto-Costa A. Topical retinol attenuates stress-induced ageing signs in human skin ex vivo, throughEGFR activation viaEGF, but notERK andAP-1 activation. Exp Dermatol 2019 ; 28 : 906–913. [CrossRef] [PubMed] [Google Scholar]
- Pineau N, Carrino DA, Caplan AI, Breton L. Biological evaluation of a new C-xylopyranoside derivative (C-Xyloside) and its role in glycosaminoglycan biosynthesis. Eur J Dermatol 2011 ; 21 : 359–370. [CrossRef] [PubMed] [Google Scholar]
- Sok J, Pineau N, Dalko-Csiba M, et al. Improvement of the dermal epidermal junction in human reconstructed skin by a new c-xylopyranoside derivative. Eur J Dermatol 2008 ; 18 : 297–302. [PubMed] [Google Scholar]
- Abdel-Motaleb AA, Abu-Dief EE, Hussein MR. Dermal morphological changes following salicylic acid peeling and microdermabrasion. J Cosmet Dermatol 2017 ; 16 : e9–e14. [CrossRef] [PubMed] [Google Scholar]
- Taddei S, Virdis A, Ghiadoni L, et al. Age-related reduction of NO availability and oxidative stress in humans. Hypertension 2001 ; 38 : 274–279. [CrossRef] [PubMed] [Google Scholar]
- Aldecoa C, Llau JV, Nuvials X, Artigas A. Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: a review. Ann Intensive Care 2020; 10 : 85. [CrossRef] [PubMed] [Google Scholar]
- La Jordan B.. sénescence en passe d’être vaincue ?. Med Sci (Paris) 2018 ; 34 : 885–890. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Lammermann I, Terlecki-Zaniewicz L, Weinmullner R, et al. Blocking negative effects of senescence in human skin fibroblasts with a plant extract. NPJ Aging Mech Dis 2018 ; 4 : 4. [CrossRef] [PubMed] [Google Scholar]
- Victorelli S, Lagnado A, Halim J, et al. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J 2019 ; 38 : e101982. [CrossRef] [PubMed] [Google Scholar]
- Jobeili L, Rousselle P, Beal D, et al. Selenium preserves keratinocyte stemness and delays senescence by maintaining epidermal adhesion. Aging (Albany NY) 2017 ; 9 : 2302–2315. [CrossRef] [Google Scholar]
- Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 2019 ; 47 : 446–456. [CrossRef] [PubMed] [Google Scholar]
- Boismal F, Serror K, Dobos G, et al. Vieillissement cutané : physiopathologie et thérapies innovantes. Med Sci (Paris) 2020; 36 : 1163–72. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Veret D, Brondello JM. Sénothérapies : avancées et nouvelles perspectives cliniques. Med Sci (Paris) 2020; 36 : 1135–42. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.