Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
|
|
---|---|---|
Page(s) | 1143 - 1154 | |
Section | Mécanismes cellulaires et physiopathologie du vieillissement | |
DOI | https://doi.org/10.1051/medsci/2020222 | |
Publié en ligne | 9 décembre 2020 |
- Rawlings ND, Salvesen G. Handbook of proteolytic enzymes, 3rd ed (vol. 2, chap. 505–513). New York : Academic Press, 2013 : 2237–85. [Google Scholar]
- Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity 2019 ; 50 : 1352–1364. [CrossRef] [PubMed] [Google Scholar]
- Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2015 ; 22 : 526–539. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Linton SD. Caspase inhibitors: a pharmaceutical industry perspective. Curr Top Med Chem 2005 ; 5 : 1697–1717. [CrossRef] [PubMed] [Google Scholar]
- Lee H, Shin EA, Lee JH. Caspase inhibitors: a review of recently patented compounds (2013–2015). Expert Opin Ther Pat 2018 ; 28 : 47–59. [CrossRef] [PubMed] [Google Scholar]
- Pop C, Salvesen GS. Human caspases: activation, specificity, and regulation. J Biol Chem 2009 ; 284 : 21777–21781. [CrossRef] [PubMed] [Google Scholar]
- Yuan J, Shaham S, Ledoux S, et al. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993 ; 75 : 641–652. [CrossRef] [PubMed] [Google Scholar]
- Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene 2003 ; 22 : 8543–8567. [CrossRef] [Google Scholar]
- Talanian RV, Quinlan C, Trautz S, et al. Substrate specificities of caspase family proteases. J Biol Chem 1997 ; 272 : 9677–9682. [CrossRef] [PubMed] [Google Scholar]
- Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and Granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997 ; 272 : 17907–17911. [CrossRef] [PubMed] [Google Scholar]
- McStay GP, Salvesen GS, Green DR. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 2008 ; 15 : 322–331. [CrossRef] [PubMed] [Google Scholar]
- Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev 2017 ; 277 : 76–89. [CrossRef] [PubMed] [Google Scholar]
- Dorstyn L, Akey CW, Kumar S. New insights into apoptosome structure and function. Cell Death Differ 2018 ; 25 : 1194–1208. [CrossRef] [PubMed] [Google Scholar]
- Groslambert M, Py BF. NLRP3, un inflammasome sous contrôle. Med Sci (Paris) 2018 ; 34 : 47–53. [CrossRef] [EDP Sciences] [Google Scholar]
- He Y, Zeng MY, Yang D, et al. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 2016 ; 530 : 354–357. [CrossRef] [PubMed] [Google Scholar]
- Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016 ; 535 : 153–158. [CrossRef] [PubMed] [Google Scholar]
- Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015 ; 526 : 660–665. [CrossRef] [PubMed] [Google Scholar]
- Miles MA, Kitevska-Ilioski T, Hawkins CJ. Old and novel functions of caspase-2. Int Rev Cell Mol Biol 2017 ; 332 : 155–212. [CrossRef] [PubMed] [Google Scholar]
- Kim JY, Garcia-Carbonell R, Yamachika S, et al. ER Stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell 2018 ; 175 : 133–145. [CrossRef] [PubMed] [Google Scholar]
- Xu ZX, Tan JW, Xu H, et al. Caspase-2 promotes AMPA receptor internalization and cognitive flexibility via mTORC2-AKT-GSK3β signaling. Nat Commun 2019 ; 10 : 3622. [CrossRef] [Google Scholar]
- Carlsson Y, Schwendimann L, Vontell R, et al. Genetic inhibition of caspase-2 reduces hypoxic-ischemic and excitotoxic neonatal brain injury. Ann Neurol 2011 ; 70 : 781–789. [CrossRef] [PubMed] [Google Scholar]
- Ahmed Z, Kalinski H, Berry M, et al. Ocular neuroprotection by siRNA targeting Caspase-2. Cell Death Disease 2011 ; 2 : e173. [CrossRef] [Google Scholar]
- Pozueta J, Lefort R, Ribe EM, et al. Caspase-2 is required for dendritic spine and behavioural alterations in J20 APP transgenic mice. Nat Commun 2013 ; 4 : 1939. [CrossRef] [Google Scholar]
- Zhao X, Kotilinek LA, Smith B, et al. Caspase-2 cleavage of tau reversibly impairs memory. Nat Med 2016 ; 22 : 1268–1276. [CrossRef] [PubMed] [Google Scholar]
- Duan H, Dixit VM. RAIDD is a new death adaptor molecule. Nature 1997 ; 385 : 86–89. [CrossRef] [PubMed] [Google Scholar]
- Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of Caspase-2 in response to genotoxic stress. Science 2004 ; 304 : 843–846. [CrossRef] [Google Scholar]
- Ribe EM, Jean YY, Goldstein RL, et al. Neuronal Caspase-2 activity and function requires RAIDD, not PIDD. Biochem J 2012 ; 444 : 951–959. [Google Scholar]
- Ando K, Parsons MJ, Shah RB, et al. NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus. J Cell Biol 2017 ; 216 : 1795–1810. [CrossRef] [PubMed] [Google Scholar]
- Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998 ; 282 : 2085–2088. [CrossRef] [PubMed] [Google Scholar]
- Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 2013 ; 341 : 1246–1249. [CrossRef] [Google Scholar]
- Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014 ; 514 : 187–192. [CrossRef] [PubMed] [Google Scholar]
- Rathinam VAK, Zhao Y, Shao F. Innate immunity to intracellular LPS. Nat Immunol 2019 ; 20 : 527–533. [CrossRef] [PubMed] [Google Scholar]
- Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015 ; 526 : 666–671. [CrossRef] [PubMed] [Google Scholar]
- Suzuki T, Franchi L, Toma C, et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 2007 ; 3 : e111. [CrossRef] [PubMed] [Google Scholar]
- Lagrange B, Benaoudia S, Wallet P, et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat Commun 2018 ; 9 : 242. [CrossRef] [Google Scholar]
- Galluzzi L, Kepp O, Chan FK, Kroemer G. Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol 2017 ; 12 : 103–130. [CrossRef] [PubMed] [Google Scholar]
- Lamy L, Ngo VN, Emre NC, et al. Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell 2013 ; 23 : 435–449. [CrossRef] [PubMed] [Google Scholar]
- Chauvier D, Ankri S, Charriaut-Marlangue C, et al. Broad-spectrum caspase inhibitors: from myth to reality?. Cell Death Differ 2007 ; 14 : 387–391. [CrossRef] [PubMed] [Google Scholar]
- Roland E, Dolle C, Prasad C, et al. Pyridazinodiazepines as a high-affinity, P2–P3 peptidomimetic class of interleukin-1β-converting enzyme inhibitor. J Med Chem 1997 ; 40 : 1941–1946. [CrossRef] [PubMed] [Google Scholar]
- Maillard MC, Brookfield FA, Courtney SM, et al. Exploiting differences in caspase-2 and -3 S2 subsites for selectivity: structure-based design, solid-phase synthesis and in vitro activity of novel substrate-based caspase-2 inhibitors. Bioorg Med Chem 2011 ; 19 : 5833–5851. [CrossRef] [PubMed] [Google Scholar]
- Bosc E, Anastasie J, Soulami F, et al. Selective caspase-2 inhibition and synapse protection with a new irreversible pentapeptide derivative (ECDO 81). Cell Death Discov 2019 ; 5(suppl 1): 1–48. [CrossRef] [Google Scholar]
- Erlanson DA, Lam JW, Wiesmann C, et al. In situ assembly of enzyme inhibitors using extended tethering. Nat Biotechnol 2003 ; 21 : 308–314. [CrossRef] [PubMed] [Google Scholar]
- Choong IC, Lew W, Lee D, et al. Identification of potent and selective small-molecule inhibitors of caspase-3 through the use of extended tethering and structure-based drug design. J Med Chem 2002 ; 45 : 5005–5022. [CrossRef] [PubMed] [Google Scholar]
- Chapman JG, Magee WP, Stukenbrok HA, et al. A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[-(2-methoxymethylpyrrolidinyl)sulfonyl]-isatin reduces myocardial ischemic injury. Eur J Pharmacol 2002 ; 456 : 59–68. [CrossRef] [PubMed] [Google Scholar]
- Scott CW, Sobotka-Briner C, Wilkins DE, et al. Novel small molecule inhibitors of caspase-3 block cellular and biochemical features of apoptosis. J Pharmacol Exp Ther 2003 ; 304 : 433–440. [CrossRef] [PubMed] [Google Scholar]
- Nobel CS, Kimland M, Nicholson DW, et al. Disulfiram is a potent inhibitor of proteases of the caspase family. Chem Res Toxicol 1997 ; 10 : 1319–1324. [CrossRef] [PubMed] [Google Scholar]
- Scheer JM, Romanowski MJ, Wells JA. A common allosteric site and mechanism in caspases. Proc Natl Acad Sci USA 2006 ; 103 : 7595–7600. [CrossRef] [Google Scholar]
- Tubeleviciute-Aydin A, Beautrait A, Lynham J, et al. Identification of allosteric inhibitors against active caspase-6. Sci Rep 2019 ; 9 : 5504. [CrossRef] [PubMed] [Google Scholar]
- Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005 ; 1 : 112–119. [CrossRef] [Google Scholar]
- Oppong K, Ellis C, Laufersweiler M, et al. Discovery of novel conformationally restricted diazocan peptidomimetics as inhibitors of interleukin-1β synthesis. Med Chem Lett 2005 ; 15 : 4291–4294. [CrossRef] [Google Scholar]
- Doitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014 ; 505 : 509–514. [CrossRef] [PubMed] [Google Scholar]
- Flores J, Noël A, Foveau B, et al. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat Commun 2018 ; 9 : 3916. [CrossRef] [Google Scholar]
- McKenzie BA, Mamik MK, Saito LB, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci USA 2018 ; 115 : E6065–E6074. [CrossRef] [Google Scholar]
- Linton SD, Aja T, Armstrong RA, et al. First-in-class pan caspase inhibitor developed for the treatment of liver disease. J Med Chem 2005 ; 48 : 6779–6782. [CrossRef] [PubMed] [Google Scholar]
- Garcia-Tsao G, Bosch J, Kayali Z, et al. Randomized placebo-controlled trial of emricasan in non-alcoholic steatohepatitis (NASH) cirrhosis with severe portal hypertension. J Hepatol 2019 ; S0168–8278 : 30724. [Google Scholar]
- Harrison SA, Goodman Z, Jabbar A, et al. A randomized, placebo-controlled trial of emricasan in patients with NASH and F1–F3 fibrosis. J Hepatol 2019 ; S0168–8278 : 30758–30755. [Google Scholar]
- Vigneswara V, Ahmed Z. Long-term neuroprotection of retinal ganglion cells by inhibiting caspase-2. Cell Death Discovery 2016 ; 2 : 16044. [CrossRef] [PubMed] [Google Scholar]
- Chauvier D, Renolleau S, Holifanjaniaina S, et al. Targeting neonatal ischemic brain injury with a pentapeptide-based irreversible caspase inhibitor. Cell Death Disease 2011 ; 2 : e203. [CrossRef] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.