Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
Page(s) 1135 - 1142
Section Mécanismes cellulaires et physiopathologie du vieillissement
DOI https://doi.org/10.1051/medsci/2020220
Publié en ligne 9 décembre 2020
  1. He S, Sharpless NE. Senescence in health and disease. Cell 2017 ; 169 : 1000–11. [CrossRef] [PubMed] [Google Scholar]
  2. Sagiv A, Burton DGA, Moshayev Z, et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging 2016 ; 8 : 328–344. [CrossRef] [PubMed] [Google Scholar]
  3. Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med 2018 ; 24 : 1246–1256. [CrossRef] [PubMed] [Google Scholar]
  4. Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 2015 ; 14 : 644–658. [CrossRef] [PubMed] [Google Scholar]
  5. Anderson R, Lagnado A, Maggiorani D, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J 2019 ; 38 [Google Scholar]
  6. Skowronska-Krawczyk D, Zhao L, Zhu J, et al. P16INK4a upregulation mediated by SIX6 defines retinal ganglion cell pathogenesis in glaucoma. Mol Cell 2015 ; 59 : 931–940. [CrossRef] [PubMed] [Google Scholar]
  7. Rocha LR, Huu VAN, Torre CPL, et al. Early removal of senescent cells protects retinal ganglion cells loss in experimental ocular hypertension. Aging Cell 2020; 19 : e13089. [CrossRef] [PubMed] [Google Scholar]
  8. Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 2018 ; 36 : 18–28. [CrossRef] [PubMed] [Google Scholar]
  9. Currais A, Farrokhi C, Dargusch R, et al. Fisetin Reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse. J Gerontol A Biol Sci Med Sci 2018 ; 73 : 299–307. [CrossRef] [PubMed] [Google Scholar]
  10. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016 ; 15 : 428–435. [CrossRef] [PubMed] [Google Scholar]
  11. Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine 2017 ; 21 : 21–28. [CrossRef] [PubMed] [Google Scholar]
  12. Cang S, Iragavarapu C, Savooji J, et al. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J Hematol Oncol 2015 ; 8 : 129. [CrossRef] [PubMed] [Google Scholar]
  13. Muñoz-Espín D, Rovira M, Galiana I, et al. A versatile drug delivery system targeting senescent cells. EMBO Mol Med 2018 ; 10 : e9355. [PubMed] [Google Scholar]
  14. González-Gualda E, Pàez-Ribes M, Lozano-Torres B, et al. Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell 2020; 19 : e13142. [CrossRef] [PubMed] [Google Scholar]
  15. Khan S, Zhang X, Lv D, et al. A selective BCL-X L PROTAC degrader achieves safe and potent antitumor activity. Nat Med 2019 ; 25 : 1938–1947. [CrossRef] [PubMed] [Google Scholar]
  16. He Y, Zhang X, Chang J, et al. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun 2020; 11. [Google Scholar]
  17. Ovadya Y, Landsberger T, Leins H, et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 2018; 9. [Google Scholar]
  18. Feng Z, Hu W, Teresky AK, et al. Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci USA 2007 ; 104 : 16633–16638. [CrossRef] [Google Scholar]
  19. Arena G, Cissé MY, Pyrdziak S, et al. Mitochondrial MDM2 regulates respiratory complex I activity independently of p53. Mol Cell 2018 ; 69 : 594–609.e8. [CrossRef] [PubMed] [Google Scholar]
  20. Wiley CD, Schaum N, Alimirah F, et al. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Sci Rep 2018 ; 8 : 2410. [CrossRef] [PubMed] [Google Scholar]
  21. Jeon OH, Kim C, Laberge R-M, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 2017 ; 23 : 775–781. [CrossRef] [PubMed] [Google Scholar]
  22. He Y, Li W, Lv D, et al. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell 2020; 19 : e13117. [PubMed] [Google Scholar]
  23. Desdín-Micó G, Soto-Heredero G, Aranda JF, et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 2020; 368 : 1371–6. [CrossRef] [Google Scholar]
  24. Yao G, Yang J, Li X, et al. Blocking the utilization of glucose induces the switch from senescence to apoptosis in pseudolaric acid B-treated human lung cancer cells in vitro. Acta Pharmacol Sin 2017 ; 38 : 1401–1411. [CrossRef] [PubMed] [Google Scholar]
  25. Guerrero A, Herranz N, Sun B, et al. Cardiac glycosides are broad-spectrum senolytics. Nat Metab 2019 ; 1 : 1074–1088. [CrossRef] [PubMed] [Google Scholar]
  26. Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 2000 ; 279 : C541–C566. [CrossRef] [PubMed] [Google Scholar]
  27. Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 2020; 583 : 127–32. [CrossRef] [PubMed] [Google Scholar]
  28. Zhan J-K, Wang Y-J, Li S, et al. AMPK/TSC2/mTOR pathway regulates replicative senescence of human vascular smooth muscle cells. Exp Ther Med 2018 ; 16 : 4853–4858. [Google Scholar]
  29. Liu J, Li L. Targeting autophagy for the treatment of alzheimer’s disease: challenges and opportunities. Front Mol Neurosci 2019; 12. [PubMed] [Google Scholar]
  30. Carroll B, Nelson G, Rabanal-Ruiz Y, et al. Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. J Cell Biol 2017 ; 216 : 1949–1957. [CrossRef] [PubMed] [Google Scholar]
  31. Saxton RA, Sabatini DM. mTOR Signaling in growth, metabolism, and disease. Cell 2017 ; 168 : 960–976. [CrossRef] [PubMed] [Google Scholar]
  32. Morita M, Prudent J, Basu K, et al. mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol Cell 2017 ; 67 : 922–35.e5. [CrossRef] [PubMed] [Google Scholar]
  33. Rosario FJ, Gupta MB, Myatt L, et al. Mechanistic target of rapamycin complex 1 promotes the expression of genes encoding electron transport chain proteins and stimulates oxidative phosphorylation in primary human trophoblast cells by regulating mitochondrial biogenesis. Sci Rep 2019 ; 9 : 246. [CrossRef] [PubMed] [Google Scholar]
  34. Chung CL, Lawrence I, Hoffman M, et al. Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. GeroScience 2019 ; 41 : 861–869. [CrossRef] [PubMed] [Google Scholar]
  35. Cabreiro F, Au C, Leung K-Y, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013 ; 153 : 228–239. [CrossRef] [PubMed] [Google Scholar]
  36. Moiseeva O, Deschênes-Simard X, St-Germain E, et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 2013 ; 12 : 489–498. [CrossRef] [PubMed] [Google Scholar]
  37. Khouri H, Collin F, Bonnefont-Rousselot D, et al. Radical-induced oxidation of metformin. Eur J Biochem 2004 ; 271 : 4745–4752. [CrossRef] [PubMed] [Google Scholar]
  38. Fang J, Yang J, Wu X, et al. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell 2018 ; 17 [Google Scholar]
  39. Devasagayam TP, Kamat JP, Mohan H, et al. Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochim Biophys Acta 1996 ; 1282 : 63–70. [CrossRef] [PubMed] [Google Scholar]
  40. Moser BA, Brondello JM, Baber-Furnari B, et al. Mechanism of caffeine-induced checkpoint override in fission yeast. Mol Cell Biol 2000 ; 20 : 4288–4294. [CrossRef] [PubMed] [Google Scholar]
  41. Li YF, Ouyang SH, Tu LF, et al. Caffeine protects skin from oxidative stress-induced senescence through the activation of autophagy. Theranostics 2018 ; 8 : 5713–5730. [CrossRef] [PubMed] [Google Scholar]
  42. Benigni A, Cassis P, Conti S, et al. Sirt3 deficiency shortens life span and impairs cardiac mitochondrial function rescued by opa1 gene transfer. Antioxid Redox Signal 2019 ; 31 : 1255–1271. [CrossRef] [PubMed] [Google Scholar]
  43. Zhao W, Ma L, Cai C, et al. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-induced THP-1 macrophages. Int J Biol Sci 2019 ; 15 : 1571–1581. [CrossRef] [PubMed] [Google Scholar]
  44. Zhang N, Chu ESH, Zhang J, et al. Peroxisome proliferator activated receptor alpha inhibits hepatocarcinogenesis through mediating NF-κB signaling pathway. Oncotarget 2014 ; 5 : 8330–8340. [CrossRef] [PubMed] [Google Scholar]
  45. Vasheghani F, Monemdjou R, Fahmi H, et al. Adult cartilage-specific peroxisome proliferator-activated receptor gamma knockout mice exhibit the spontaneous osteoarthritis phenotype. Am J Pathol 2013 ; 182 : 1099–1106. [CrossRef] [PubMed] [Google Scholar]
  46. Nogueira-Recalde U, Lorenzo-Gómez I, Blanco FJ, et al. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine 2019 ; 45 : 588–605. [CrossRef] [PubMed] [Google Scholar]
  47. Xu M, Palmer AK, Ding H, et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 2015; 4 : e12997. [CrossRef] [PubMed] [Google Scholar]
  48. Xu M, Tchkonia T, Kirkland JL. Perspective: targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacol Res 2016 ; 111 : 152–154. [CrossRef] [PubMed] [Google Scholar]
  49. Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 2017 ; 23 : 1072–1079. [CrossRef] [PubMed] [Google Scholar]
  50. Liu C, Arnold R, Henriques G, et al. Inhibition of JAK-STAT signaling with baricitinib reduces inflammation and improves cellular homeostasis in progeria cells. Cells 2019; 8. [Google Scholar]
  51. Gatinois V, Desprat R, Pichard L, et al. iPSC reprogramming of fibroblasts from a patient with a Rothmund-Thomson syndrome RTS. Stem Cell Res 2020; 45 : 101807. [CrossRef] [Google Scholar]
  52. Ozsvari B, Nuttall JR, Sotgia F, et al. Azithromycin and roxithromycin define a new family of senolytic drugs that target senescent human fibroblasts. Aging 2018 ; 10 : 3294–3307. [CrossRef] [PubMed] [Google Scholar]
  53. Justice JN, Nambiar AM, Tchkonia T, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 2019 ; 40 : 554–563. [CrossRef] [PubMed] [Google Scholar]
  54. Martyanov V, Whitfield ML, Varga J. Senescence signature in skin biopsies from systemic sclerosis patients treated with senolytic therapy: potential predictor of clinical response?. Arthritis Rheumatol 2019 ; 71 : 1766–1767. [CrossRef] [Google Scholar]
  55. Hickson LJ, Prata LGPL, Bobart SA, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 2019 ; 47 : 446–456. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.