Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
Page(s) 1129 - 1134
Section Mécanismes cellulaires et physiopathologie du vieillissement
DOI https://doi.org/10.1051/medsci/2020221
Publié en ligne 9 décembre 2020
  1. Krisko A, Radman M. Protein damage, ageing and age-related diseases. Open Biol 2019; 9 : 180249. [CrossRef] [PubMed] [Google Scholar]
  2. Radman M. Cellular parabiosis and the latency of age-related diseases. Open Biol 2019; 9. [Google Scholar]
  3. Krisko A, Radman M. Phenotypic and genetic consequences of protein damage. PLoS Genet 2013 ; 9. [Google Scholar]
  4. Kirkwood TB. Understanding the odd science of aging. Cell 2005 ; 120 : 437–447. [CrossRef] [PubMed] [Google Scholar]
  5. Krisko A, Radman M. Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proc Natl Acad Sci USA 2010 ; 107 : 14373–14377. [CrossRef] [Google Scholar]
  6. Krisko A, Leroy M, Radman M, et al. Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proc Natl Acad Sci USA 2012 ; 109 : 2354–2357. [CrossRef] [Google Scholar]
  7. Sulston JE, Brenner S. The DNA of Caenorhabditis elegans. Genetics 1974; 77 : 95-LP-104. [Google Scholar]
  8. Hengartner MO. Robert Horvitz H. Programmed cell death in Caenorhabditis elegans. Curr Opin Genet Dev 1994 ; 4 : 581–586. [CrossRef] [PubMed] [Google Scholar]
  9. Metzstein MM, Stanfield GM, Horvitz HR. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 1998 ; 14 : 410–416. [CrossRef] [PubMed] [Google Scholar]
  10. Krisko A, Radman M. Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 2013 ; 5 : a012765–a012765. [CrossRef] [Google Scholar]
  11. López-otín C, Blasco MA, Partridge L, et al. The Hallmarks of aging longevity. Cell 2013 ; 153 : 1194–1217. [CrossRef] [PubMed] [Google Scholar]
  12. Speakman JR. Body size, energy metabolism and lifespan. J Exp Biol 2005; 208 : 1717-LP-30. [CrossRef] [Google Scholar]
  13. Karras GI, Yi S, Sahni N, et al. HSP90 shapes the consequences of human genetic variation. Cell 2017 ; 168 : 856–66 e12. [CrossRef] [Google Scholar]
  14. Bert P.. Expériences et considérations sur la greffe animale. J Anat Physiol 1864 ; 1 : 69–87. [Google Scholar]
  15. Nawaz M, Fatima F. Extracellular vesicles, tunneling nanotubes, and cellular interplay: synergies and missing links. Front Mol Biosci 2017 ; 4 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  16. Gerdes HH, Bukoreshtliev N V, Barroso JFV. Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 2007 ; 581 : 2194–2201. [CrossRef] [PubMed] [Google Scholar]
  17. Vignais ML, Caicedo A, Brondello JM, et al. Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy. Stem Cells Int 2017; 2017. [Google Scholar]
  18. Spees JL, Olson SD, Whitney MJ, et al. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 2006 ; 103 : 1283–1288. [CrossRef] [Google Scholar]
  19. Orgel LE. The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 1963 ; 49 : 517–521. [CrossRef] [Google Scholar]
  20. Orgel LE. The maintenance of the accuracy of protein synthesis and its relevance to ageing: a correction. Proc Natl Acad Sci USA 1970 ; 67 : 1476. [CrossRef] [Google Scholar]
  21. Oliver CN, Ahn BW, Moerman EJ, et al. Age-related changes in oxidized proteins. J Biol Chem 1987 ; 262 : 5488–5491. [CrossRef] [PubMed] [Google Scholar]
  22. Stadtman ER. Protein oxidation and aging. Free Radic Res 2006 ; 40 : 1250–1258. [CrossRef] [PubMed] [Google Scholar]
  23. De Graff AMR, Hazoglou MJ, Dill KA.. Highly charged proteins: the Achilles’ heel of aging proteomes. Structure 2016 ; 24 : 329–336. [CrossRef] [PubMed] [Google Scholar]
  24. Castro JP, Ott C, Jung T, et al. Carbonylation of the cytoskeletal protein actin leads to aggregate formation. Free Radic Biol Med 2012 ; 53 : 91625. [CrossRef] [Google Scholar]
  25. Tanase M, Urbanska AM, Zolla V, et al. Role of carbonyl modifications on aging-associated protein aggregation. Sci Rep 2016 ; 6 : 1–14. [Google Scholar]
  26. Rahim A, Saha P, Jha KK, et al. Reciprocal carbonyl-carbonyl interactions in small molecules and proteins. Nat Commun 2017 ; 8 : 1–12. [CrossRef] [Google Scholar]
  27. Karri S, Singh S, Paripati AK, et al. Adaptation of Mge1 to oxidative stress by local unfolding and altered Interaction with mitochondrial Hsp70 and Mxr2. Mitochondrion 2019 ; 46 : 140–148. [CrossRef] [PubMed] [Google Scholar]
  28. Korovila I, Hugo M, Castro JP, et al. Proteostasis, oxidative stress and aging. Redox Biol 2017 ; 13 : 550–567. [CrossRef] [PubMed] [Google Scholar]
  29. Xu J, Reumers J, Couceiro JR, et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 2011 ; 7 : 285–295. [CrossRef] [Google Scholar]
  30. Sengupta U, Nilson AN, Kayed R. The role of amyloid-beta oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 2016 ; 6 : 42–49. [CrossRef] [PubMed] [Google Scholar]
  31. Ludtmann MHR, Angelova PR, Horrocks MH, et al. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun 2018; 9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.