Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
Page(s) 1118 - 1128
Section Mécanismes cellulaires et physiopathologie du vieillissement
DOI https://doi.org/10.1051/medsci/2020241
Publié en ligne 9 décembre 2020
  1. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol 2018 ; 28 : 436–453. [CrossRef] [Google Scholar]
  2. Rodier F, Munoz D, Teachenor R, et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 2011 ; 124 : 68–81. [CrossRef] [Google Scholar]
  3. Brondello JM, Prieur A, Philipot D, et al. La sénescence cellulaire : un nouveau mythe de Janus ?. Med Sci (Paris) 2012 ; 28 : 288–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Childs BG, Baker DJ, Kirkland JL, et al. Senescence and apoptosis: dueling or complementary cell fates?. EMBO Rep 2014 ; 15 : 1139–1153. [CrossRef] [PubMed] [Google Scholar]
  5. Coppé JP, Desprez PY, Krtolica A, et al. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010 ; 5 : 99–118. [CrossRef] [PubMed] [Google Scholar]
  6. Ito Y, Hoare M, Narita M. Spatial and temporal control of senescence. Trends Cell Biol 2017 ; 27 : 820–832. [CrossRef] [Google Scholar]
  7. Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution 1957; 398. [CrossRef] [Google Scholar]
  8. Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol 2011 ; 192 : 547–556. [CrossRef] [PubMed] [Google Scholar]
  9. Baker D, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011 ; 479 : 232–236. [CrossRef] [PubMed] [Google Scholar]
  10. Paez-Ribes M, González-Gualda E, Doherty GJ, et al. Targeting senescent cells in translational medicine. EMBO Mol Med 2019 ; 11 : e10234. [CrossRef] [PubMed] [Google Scholar]
  11. Ovadya Y, Landsberger T, Leins H, et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 2018; 9. [Google Scholar]
  12. Perez-Lanzon M, Zitvogel L, Kroemer G. Failure of immunosurveillance accelerates aging. Oncoimmunology 2019 ; 8 : e1575117. [CrossRef] [PubMed] [Google Scholar]
  13. Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997 ; 88 : 593–602. [CrossRef] [PubMed] [Google Scholar]
  14. Zhu H, Blake S, Kusuma FK, et al. Oncogene-induced senescence: from biology to therapy. Mech Ageing Dev 2020; 187 : 111229. [CrossRef] [PubMed] [Google Scholar]
  15. Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006 ; 444 : 633–637. [CrossRef] [PubMed] [Google Scholar]
  16. Kuilman T, Michaloglou C, Mooi WJ, et al. The essence of senescence. Genes Dev 2010 ; 24 : 2463–2479. [CrossRef] [PubMed] [Google Scholar]
  17. Bianchi-Smiraglia A, Nikiforov MA. Controversial aspects of oncogene-induced senescence. Cell Cycle 2012 ; 11 : 4147–4151. [CrossRef] [PubMed] [Google Scholar]
  18. Jeanblanc M, Ragu S, Gey C, et al. Parallel pathways in RAF-induced senescence and conditions for its reversion. Oncogene 2012 ; 31 : 3072–3085. [CrossRef] [Google Scholar]
  19. Michaloglou C, Vredeveld LCW, Mooi WJ, et al. BRAF E600 in benign and malignant human tumours. Oncogene 2008 ; 27 : 877–895. [CrossRef] [PubMed] [Google Scholar]
  20. Astle MV, Hannan KM, Ng PY, et al. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene 2012 ; 31 : 1949–1962. [CrossRef] [Google Scholar]
  21. Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metabol 2016 ; 23 : 303–314. [CrossRef] [Google Scholar]
  22. Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 2011 ; 30 : 1536–1548. [CrossRef] [PubMed] [Google Scholar]
  23. Hiebert P, Wietecha MS, Cangkrama M, et al. Nrf2-mediated fibroblast reprogramming drives cellular senescence by targeting the matrisome. Developmental Cell 2018 ; 46 : 145–61 e10. [CrossRef] [Google Scholar]
  24. Campisi J.. Aging, cellular senescence, and cancer. Annu Rev Physiol 2013 ; 75 : 685–705. [CrossRef] [Google Scholar]
  25. Acosta JC, Banito A, Wuestefeld T, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013 ; 15 : 978–990. [CrossRef] [PubMed] [Google Scholar]
  26. Rodier F, Coppe J, Patil C, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009 ; 11 : 973–979. [CrossRef] [PubMed] [Google Scholar]
  27. Härtlova A, Erttmann SF, Raffi FA, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor sting to promote anti-microbial innate immunity. Immunity 2015 ; 42 : 332–343. [CrossRef] [PubMed] [Google Scholar]
  28. Coquel F, Neumayer C, Lin YL, et al. SAMHD1 and the innate immune response to cytosolic DNA during DNA replication. Curr Opin Immunol 2019 ; 56 : 24–30. [CrossRef] [PubMed] [Google Scholar]
  29. Chanut R, Petrilli V. Détection de l’ADN cytosolique par la voie cGAS-STING : de l’immunité innée vers le contrôle de la tumorigenèse. Med Sci (Paris) 2019 ; 35 : 527–534. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Dou Z, Ghosh K, Vizioli MG, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 2017 ; 550 : 402–406. [CrossRef] [PubMed] [Google Scholar]
  31. Glück S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 2017 ; 19 : 1061–1070. [CrossRef] [PubMed] [Google Scholar]
  32. Yang H, Wang H, Ren J, et al. cGAS is essential for cellular senescence. Proc Natl Acad Sci USA 2017 ; 114 : E4612–E4620. [CrossRef] [Google Scholar]
  33. De Cecco M, Ito T, Petrashen AP, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019 ; 566 : 73–78. [CrossRef] [PubMed] [Google Scholar]
  34. Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003 ; 423 : 293–298. [CrossRef] [PubMed] [Google Scholar]
  35. De Sandre-Giovannoli A, Bernard R, Cau P, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science 2003 ; 300 : 2055. [Google Scholar]
  36. Nissan X, Blondel S, Navarro C, et al. Unique preservation of neural cells in Hutchinson-Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. Cell Rep 2012 ; 2 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  37. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science 2006 ; 312 : 1059–1063. [CrossRef] [Google Scholar]
  38. Redwood AB, Perkins SM, Vanderwaal RP, et al. A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle 2011 ; 10 : 2549–2560. [CrossRef] [PubMed] [Google Scholar]
  39. Cobb AM, Larrieu D, Warren DT, et al. Prelamin A impairs 53BP1 nuclear entry by mislocalizing NUP153 and disrupting the Ran gradient. Aging Cell 2016 ; 15 : 1039–1050. [CrossRef] [PubMed] [Google Scholar]
  40. Liu B, Wang J, Chan KM, et al. Genomic instability in laminopathy-based premature aging. Nat Med 2005 ; 11 : 780–785. [CrossRef] [PubMed] [Google Scholar]
  41. Burla R, La Torre M, Saggio I. Mammalian telomeres and their partnership with lamins. Nucleus 2016 ; 7 : 187–202. [CrossRef] [PubMed] [Google Scholar]
  42. Wood AM, Rendtlew Danielsen JM, Lucas CA, et al. TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends. Nat Commun 2014 ; 5 : 5467. [CrossRef] [Google Scholar]
  43. Aguado J, Sola-Carvajal A, Cancila V, et al. Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson-Gilford progeria syndrome. Nat Commun 2019 ; 10 : 4990. [CrossRef] [Google Scholar]
  44. Richards S, Muter J, Ritchie P, et al. The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet 2011 ; 20 : 3997–4004. [CrossRef] [PubMed] [Google Scholar]
  45. Kubben N, Zhang W, Wang L, et al. Repression of the antioxidant NRF2 pathway in premature aging. Cell 2016 ; 165 : 1361–1374. [CrossRef] [PubMed] [Google Scholar]
  46. Fabrini R, Bocedi A, Pallottini V, et al. Nuclear Shield: a multi-enzyme task-force for nucleus protection. PLoS One 2010 ; 5 : e14125. [CrossRef] [Google Scholar]
  47. Singh M, Hunt CR, Pandita RK, et al. Lamin A/C depletion enhances dna damage-induced stalled replication fork arrest. Mol Cell Biol 2013 ; 33 : 1210–1222. [CrossRef] [PubMed] [Google Scholar]
  48. Hilton BA, Liu J, Cartwright BM, et al. Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes. FASEB J 2017 ; 31 : 3882–3893. [CrossRef] [PubMed] [Google Scholar]
  49. Coll-Bonfill N, Cancado de Faria R, Bhoopatiraju S, et al. Calcitriol prevents RAD51 loss and cGAS-STING-IFN response triggered by progerin. Proteomics 2019; e1800406. [PubMed] [Google Scholar]
  50. Osorio F, Barcena C, Soria-Valles C, et al. Nuclear lamina defects cause ATM-dependent NF-kappaB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 2012 ; 26 : 2311–2324. [CrossRef] [PubMed] [Google Scholar]
  51. Freund A, Laberge R, Demaria M, et al. Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 2012 ; 23 : 2066–2075. [CrossRef] [PubMed] [Google Scholar]
  52. Shimi T, Butin-Israeli V, Adam S, et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 2011 ; 25 : 2579–2593. [CrossRef] [PubMed] [Google Scholar]
  53. Dou Z, Xu C, Donahue G, et al. Autophagy mediates degradation of nuclear lamina. Nature 2015 ; 527 : 105–109. [CrossRef] [PubMed] [Google Scholar]
  54. Barascu A, Le Chalony C, Pennarun G, et al. Oxidative stress induces an ATM-independent senescence pathway through p38 MAPK-mediated lamin B1 accumulation. EMBO J 2012 ; 31 : 1080–1094. [CrossRef] [PubMed] [Google Scholar]
  55. Dreesen O, Chojnowski A, Ong P, et al. Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J Cell Biol 2013 ; 200 : 605–617. [CrossRef] [PubMed] [Google Scholar]
  56. Shah PP, Donahue G, Otte GL, et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 2013 ; 27 : 1787–1799. [CrossRef] [PubMed] [Google Scholar]
  57. Malhas AN, Lee CF, Vaux DJ. Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol 2009 ; 184 : 45–55. [CrossRef] [PubMed] [Google Scholar]
  58. Columbaro M, Mattioli E, Maraldi NM, et al. Oct-1 recruitment to the nuclear envelope in adult-onset autosomal dominant leukodystrophy. Biochim Biophys Acta 2013 ; 1832 : 411–420. [CrossRef] [PubMed] [Google Scholar]
  59. Butin-Israeli V, Adam S, Jain N, et al. Role of lamin b1 in chromatin instability. Mol Cell Biol 2015 ; 35 : 884–898. [CrossRef] [PubMed] [Google Scholar]
  60. Liu N, Sun J, Kono K, et al. Regulation of homologous recombinational repair by lamin B1 in radiation-induced DNA damage. FASEB J 2015 ; 29 : 2514–2525. [CrossRef] [PubMed] [Google Scholar]
  61. Butin-Israeli V, Adam SA, Goldman RD. Regulation of nucleotide excision repair by nuclear lamin b1. PLoS One 2013 ; 8 : e69169. [CrossRef] [Google Scholar]
  62. Vermeij WP, Hoeijmakers JHJ, Pothof J. Genome integrity in aging: human syndromes, mouse models, and therapeutic options. Annu Rev Pharmacol Toxicol 2016 ; 56 : 427–445. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.