Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
Page(s) 1113 - 1117
Section Mécanismes cellulaires et physiopathologie du vieillissement
DOI https://doi.org/10.1051/medsci/2020242
Publié en ligne 9 décembre 2020
  1. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014 ; 15 : 482-96. [CrossRef] [PubMed] [Google Scholar]
  2. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell 2013 ; 153 : 1194-217. [CrossRef] [PubMed] [Google Scholar]
  3. Kowald A, Kirkwood TBL. Can aging be programmed? A critical literature review. Aging Cell 2016 ; 15 : 986-98. [CrossRef] [PubMed] [Google Scholar]
  4. Mitteldorf J. Can aging be programmed? Biochem Mosc 2018 ; 83 : 1524-33. [CrossRef] [Google Scholar]
  5. Jones OR, Scheuerlein A, Salguero-Gómez R, et al. Diversity of ageing across the tree of life. Nature 2014 ; 505 : 169-73. [CrossRef] [PubMed] [Google Scholar]
  6. Valenzano DR, Aboobaker A, Seluanov A, et al. Non-canonical aging model systems and why we need them. EMBO J 2017 ; 36 : 959-63. [CrossRef] [PubMed] [Google Scholar]
  7. Harel I, Benayoun BA, Machado B, et al. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell 2015 ; 160 : 1013-26. [CrossRef] [PubMed] [Google Scholar]
  8. Ruby JG, Smith M, Buffenstein R. Naked Mole-Rat mortality rates defy gompertzian laws by not increasing with age. Elife 2018 ; 7 : e31157. [CrossRef] [PubMed] [Google Scholar]
  9. Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 2015 ; 16 : 593-610. [CrossRef] [PubMed] [Google Scholar]
  10. Cournil A, Kirkwood TB. If you would live long, choose your parents well. Trends Genet 2001 ; 17 : 233-5. [CrossRef] [PubMed] [Google Scholar]
  11. Libert S, Bonkowski MS, Pointer K, et al. Deviation of innate circadian period from 24 h reduces longevity in mice. Aging Cell 2012 ; 11 : 794-800. [CrossRef] [PubMed] [Google Scholar]
  12. Riera CE, Merkwirth C, Filho CDDM, et al. Signaling networks determining life span. Ann Rev Biochem 2016 ; 85 : 35-64. [CrossRef] [Google Scholar]
  13. Campisi J, Kapahi P, Lithgow GJ, et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019 ; 1-10. [Google Scholar]
  14. Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 2016 ; 530 : 184-9. [CrossRef] [PubMed] [Google Scholar]
  15. Van Deursen JM. The role of senescent cells in ageing. Nature 2014 ; 509 : 439-46. [CrossRef] [PubMed] [Google Scholar]
  16. Grosse L, Wagner N, Emelyanov A, et al. Defined p16high senescent cell types are indispensable for mouse healthspan. Cell Metab 2020 ; 32 : 87-99.e6. [CrossRef] [PubMed] [Google Scholar]
  17. Gilson E, Géli V. How telomeres are replicated. Nat Rev Mol Cell Biol 2007 ; 8 : 825-38. [CrossRef] [PubMed] [Google Scholar]
  18. Zglinicki T von, Saretzki G, Döcke W, et al. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 1995 ; 220 : 186-93. [CrossRef] [PubMed] [Google Scholar]
  19. Ye J, Renault VM, Jamet K, et al. Transcriptional outcome of telomere signalling. Nat Rev Genet 2014 ; 15 : 491-503. [CrossRef] [PubMed] [Google Scholar]
  20. Rakshit K, Giebultowicz JM. Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila. Aging Cell 2013 ; 12 : 752-62. [CrossRef] [PubMed] [Google Scholar]
  21. Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase sirt1 modulates clock-mediated chromatin remodeling and circadian control. Cell 2008 ; 134 : 329-40. [CrossRef] [PubMed] [Google Scholar]
  22. Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator Clock is a histone acetyltransferase. Cell 2006 ; 125 : 497-508. [CrossRef] [PubMed] [Google Scholar]
  23. Lamia KA, Sachdeva UM, DiTacchio L, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009 ; 326 : 437-40. [CrossRef] [PubMed] [Google Scholar]
  24. Martínez-Zamudio RI, Roux P-F, Freitas JANLF de, et al. AP-1 imprints a reversible transcriptional programme of senescent cells. Nat Cell Biol 2020 ; 22 : 842-55. [CrossRef] [PubMed] [Google Scholar]
  25. Horvath S. DNA methylation age of human tissues and cell types. Genome biol 2013 ; 14 : R115-20. [CrossRef] [PubMed] [Google Scholar]
  26. Sahin E, DePinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 2010 ; 464 : 520-8. [CrossRef] [PubMed] [Google Scholar]
  27. Amano H, Chaudhury A, Rodriguez-Aguayo C, et al. Telomere dysfunction induces sirtuin repression that drives telomere-dependent disease. Cell Metab 2019 ; 1-27. [Google Scholar]
  28. Amano H, Sahin E. Telomeres and sirtuins: at the end we meet again. Mol Cell Oncol 2019 ; 6 : e1632613. [CrossRef] [PubMed] [Google Scholar]
  29. Baek GH, Cheng H, Kim I, Rao H. The Cdc48 protein and its cofactor vms1 are involved in cdc13 protein degradation. J Biol Chem 2012 ; 287 : 26788-95 [CrossRef] [PubMed] [Google Scholar]
  30. Tennen RI, Bua DJ, Wright WE, et al. SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun 2011 ; 2 : 433. [CrossRef] [PubMed] [Google Scholar]
  31. Palacios JA, Herrans D, de Bonis ML, et al. SIRT1 contributes to telomere maintenance and augments global homologous recombination J Cell Biol 2010 ; 191 : 1299-313. [CrossRef] [PubMed] [Google Scholar]
  32. Simonet T, Zaragosi LE, Philippe C, et al. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res 2011 ; 21 : 1028-38. [CrossRef] [PubMed] [Google Scholar]
  33. Yang D, Xiong Y, Kim H, et al. Human telomeric proteins occupy selective interstitial sites. Cell Res 2011 ; 21 : 1013-27. [CrossRef] [PubMed] [Google Scholar]
  34. Cherfils-Vicini J, Iltis C, Cervera L, et al. Cancer cells induce immune escape via glycocalyx changes controlled by the telomeric protein TRF2. EMBO J 2019 ; 38 : e100012. [CrossRef] [PubMed] [Google Scholar]
  35. Cherfils-Vicini J, Zizza P, Gilson E, Biroccio A. A novel pathway links telomeres to NK-cell activity: Implications for immunotherapy. Oncoimmunology 2014 ; 3 : e27358. [CrossRef] [PubMed] [Google Scholar]
  36. Biroccio A, Cherfils-Vicini J, Augereau A, et al. TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nat Cell biol 2013 ; 15 : 818-28. [CrossRef] [PubMed] [Google Scholar]
  37. Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward. Cell 2019 ; 179 : 813-27. [CrossRef] [PubMed] [Google Scholar]
  38. Strong R, Miller RA, Astle CM, et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 2008 ; 7 : 641-50. [CrossRef] [PubMed] [Google Scholar]
  39. Khosla S, Farr JN, Tchkonia T, et al. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 2020 ; 16 : 263-75. [CrossRef] [PubMed] [Google Scholar]
  40. Ask TF, Lugo RG, Sütterlin S. The neuro-immuno-senescence integrative model (NISIM) on the negative association between parasympathetic activity and cellular senescence. Front Neurosci 2018 ; 12 : 726. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.