Open Access
Issue |
Med Sci (Paris)
Volume 36, Number 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
|
|
---|---|---|
Page(s) | 1118 - 1128 | |
Section | Mécanismes cellulaires et physiopathologie du vieillissement | |
DOI | https://doi.org/10.1051/medsci/2020241 | |
Published online | 09 December 2020 |
- Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol 2018 ; 28 : 436–453. [CrossRef] [Google Scholar]
- Rodier F, Munoz D, Teachenor R, et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci 2011 ; 124 : 68–81. [CrossRef] [Google Scholar]
- Brondello JM, Prieur A, Philipot D, et al. La sénescence cellulaire : un nouveau mythe de Janus ?. Med Sci (Paris) 2012 ; 28 : 288–296. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Childs BG, Baker DJ, Kirkland JL, et al. Senescence and apoptosis: dueling or complementary cell fates?. EMBO Rep 2014 ; 15 : 1139–1153. [CrossRef] [PubMed] [Google Scholar]
- Coppé JP, Desprez PY, Krtolica A, et al. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010 ; 5 : 99–118. [CrossRef] [PubMed] [Google Scholar]
- Ito Y, Hoare M, Narita M. Spatial and temporal control of senescence. Trends Cell Biol 2017 ; 27 : 820–832. [CrossRef] [Google Scholar]
- Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution 1957; 398. [CrossRef] [Google Scholar]
- Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol 2011 ; 192 : 547–556. [CrossRef] [PubMed] [Google Scholar]
- Baker D, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011 ; 479 : 232–236. [CrossRef] [PubMed] [Google Scholar]
- Paez-Ribes M, González-Gualda E, Doherty GJ, et al. Targeting senescent cells in translational medicine. EMBO Mol Med 2019 ; 11 : e10234. [CrossRef] [PubMed] [Google Scholar]
- Ovadya Y, Landsberger T, Leins H, et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 2018; 9. [Google Scholar]
- Perez-Lanzon M, Zitvogel L, Kroemer G. Failure of immunosurveillance accelerates aging. Oncoimmunology 2019 ; 8 : e1575117. [CrossRef] [PubMed] [Google Scholar]
- Serrano M, Lin AW, McCurrach ME, et al. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997 ; 88 : 593–602. [CrossRef] [PubMed] [Google Scholar]
- Zhu H, Blake S, Kusuma FK, et al. Oncogene-induced senescence: from biology to therapy. Mech Ageing Dev 2020; 187 : 111229. [CrossRef] [PubMed] [Google Scholar]
- Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006 ; 444 : 633–637. [CrossRef] [PubMed] [Google Scholar]
- Kuilman T, Michaloglou C, Mooi WJ, et al. The essence of senescence. Genes Dev 2010 ; 24 : 2463–2479. [CrossRef] [PubMed] [Google Scholar]
- Bianchi-Smiraglia A, Nikiforov MA. Controversial aspects of oncogene-induced senescence. Cell Cycle 2012 ; 11 : 4147–4151. [CrossRef] [PubMed] [Google Scholar]
- Jeanblanc M, Ragu S, Gey C, et al. Parallel pathways in RAF-induced senescence and conditions for its reversion. Oncogene 2012 ; 31 : 3072–3085. [CrossRef] [Google Scholar]
- Michaloglou C, Vredeveld LCW, Mooi WJ, et al. BRAF E600 in benign and malignant human tumours. Oncogene 2008 ; 27 : 877–895. [CrossRef] [PubMed] [Google Scholar]
- Astle MV, Hannan KM, Ng PY, et al. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene 2012 ; 31 : 1949–1962. [CrossRef] [Google Scholar]
- Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metabol 2016 ; 23 : 303–314. [CrossRef] [Google Scholar]
- Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 2011 ; 30 : 1536–1548. [CrossRef] [PubMed] [Google Scholar]
- Hiebert P, Wietecha MS, Cangkrama M, et al. Nrf2-mediated fibroblast reprogramming drives cellular senescence by targeting the matrisome. Developmental Cell 2018 ; 46 : 145–61 e10. [CrossRef] [Google Scholar]
- Campisi J.. Aging, cellular senescence, and cancer. Annu Rev Physiol 2013 ; 75 : 685–705. [CrossRef] [Google Scholar]
- Acosta JC, Banito A, Wuestefeld T, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013 ; 15 : 978–990. [CrossRef] [PubMed] [Google Scholar]
- Rodier F, Coppe J, Patil C, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009 ; 11 : 973–979. [CrossRef] [PubMed] [Google Scholar]
- Härtlova A, Erttmann SF, Raffi FA, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor sting to promote anti-microbial innate immunity. Immunity 2015 ; 42 : 332–343. [CrossRef] [PubMed] [Google Scholar]
- Coquel F, Neumayer C, Lin YL, et al. SAMHD1 and the innate immune response to cytosolic DNA during DNA replication. Curr Opin Immunol 2019 ; 56 : 24–30. [CrossRef] [PubMed] [Google Scholar]
- Chanut R, Petrilli V. Détection de l’ADN cytosolique par la voie cGAS-STING : de l’immunité innée vers le contrôle de la tumorigenèse. Med Sci (Paris) 2019 ; 35 : 527–534. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Dou Z, Ghosh K, Vizioli MG, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 2017 ; 550 : 402–406. [CrossRef] [PubMed] [Google Scholar]
- Glück S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 2017 ; 19 : 1061–1070. [CrossRef] [PubMed] [Google Scholar]
- Yang H, Wang H, Ren J, et al. cGAS is essential for cellular senescence. Proc Natl Acad Sci USA 2017 ; 114 : E4612–E4620. [CrossRef] [Google Scholar]
- De Cecco M, Ito T, Petrashen AP, et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019 ; 566 : 73–78. [CrossRef] [PubMed] [Google Scholar]
- Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003 ; 423 : 293–298. [CrossRef] [PubMed] [Google Scholar]
- De Sandre-Giovannoli A, Bernard R, Cau P, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science 2003 ; 300 : 2055. [Google Scholar]
- Nissan X, Blondel S, Navarro C, et al. Unique preservation of neural cells in Hutchinson-Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. Cell Rep 2012 ; 2 : 1–9. [CrossRef] [PubMed] [Google Scholar]
- Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science 2006 ; 312 : 1059–1063. [CrossRef] [Google Scholar]
- Redwood AB, Perkins SM, Vanderwaal RP, et al. A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle 2011 ; 10 : 2549–2560. [CrossRef] [PubMed] [Google Scholar]
- Cobb AM, Larrieu D, Warren DT, et al. Prelamin A impairs 53BP1 nuclear entry by mislocalizing NUP153 and disrupting the Ran gradient. Aging Cell 2016 ; 15 : 1039–1050. [CrossRef] [PubMed] [Google Scholar]
- Liu B, Wang J, Chan KM, et al. Genomic instability in laminopathy-based premature aging. Nat Med 2005 ; 11 : 780–785. [CrossRef] [PubMed] [Google Scholar]
- Burla R, La Torre M, Saggio I. Mammalian telomeres and their partnership with lamins. Nucleus 2016 ; 7 : 187–202. [CrossRef] [PubMed] [Google Scholar]
- Wood AM, Rendtlew Danielsen JM, Lucas CA, et al. TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends. Nat Commun 2014 ; 5 : 5467. [CrossRef] [Google Scholar]
- Aguado J, Sola-Carvajal A, Cancila V, et al. Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson-Gilford progeria syndrome. Nat Commun 2019 ; 10 : 4990. [CrossRef] [Google Scholar]
- Richards S, Muter J, Ritchie P, et al. The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet 2011 ; 20 : 3997–4004. [CrossRef] [PubMed] [Google Scholar]
- Kubben N, Zhang W, Wang L, et al. Repression of the antioxidant NRF2 pathway in premature aging. Cell 2016 ; 165 : 1361–1374. [CrossRef] [PubMed] [Google Scholar]
- Fabrini R, Bocedi A, Pallottini V, et al. Nuclear Shield: a multi-enzyme task-force for nucleus protection. PLoS One 2010 ; 5 : e14125. [CrossRef] [Google Scholar]
- Singh M, Hunt CR, Pandita RK, et al. Lamin A/C depletion enhances dna damage-induced stalled replication fork arrest. Mol Cell Biol 2013 ; 33 : 1210–1222. [CrossRef] [PubMed] [Google Scholar]
- Hilton BA, Liu J, Cartwright BM, et al. Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes. FASEB J 2017 ; 31 : 3882–3893. [CrossRef] [PubMed] [Google Scholar]
- Coll-Bonfill N, Cancado de Faria R, Bhoopatiraju S, et al. Calcitriol prevents RAD51 loss and cGAS-STING-IFN response triggered by progerin. Proteomics 2019; e1800406. [PubMed] [Google Scholar]
- Osorio F, Barcena C, Soria-Valles C, et al. Nuclear lamina defects cause ATM-dependent NF-kappaB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 2012 ; 26 : 2311–2324. [CrossRef] [PubMed] [Google Scholar]
- Freund A, Laberge R, Demaria M, et al. Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 2012 ; 23 : 2066–2075. [CrossRef] [PubMed] [Google Scholar]
- Shimi T, Butin-Israeli V, Adam S, et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev 2011 ; 25 : 2579–2593. [CrossRef] [PubMed] [Google Scholar]
- Dou Z, Xu C, Donahue G, et al. Autophagy mediates degradation of nuclear lamina. Nature 2015 ; 527 : 105–109. [CrossRef] [PubMed] [Google Scholar]
- Barascu A, Le Chalony C, Pennarun G, et al. Oxidative stress induces an ATM-independent senescence pathway through p38 MAPK-mediated lamin B1 accumulation. EMBO J 2012 ; 31 : 1080–1094. [CrossRef] [PubMed] [Google Scholar]
- Dreesen O, Chojnowski A, Ong P, et al. Lamin B1 fluctuations have differential effects on cellular proliferation and senescence. J Cell Biol 2013 ; 200 : 605–617. [CrossRef] [PubMed] [Google Scholar]
- Shah PP, Donahue G, Otte GL, et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 2013 ; 27 : 1787–1799. [CrossRef] [PubMed] [Google Scholar]
- Malhas AN, Lee CF, Vaux DJ. Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol 2009 ; 184 : 45–55. [CrossRef] [PubMed] [Google Scholar]
- Columbaro M, Mattioli E, Maraldi NM, et al. Oct-1 recruitment to the nuclear envelope in adult-onset autosomal dominant leukodystrophy. Biochim Biophys Acta 2013 ; 1832 : 411–420. [CrossRef] [PubMed] [Google Scholar]
- Butin-Israeli V, Adam S, Jain N, et al. Role of lamin b1 in chromatin instability. Mol Cell Biol 2015 ; 35 : 884–898. [CrossRef] [PubMed] [Google Scholar]
- Liu N, Sun J, Kono K, et al. Regulation of homologous recombinational repair by lamin B1 in radiation-induced DNA damage. FASEB J 2015 ; 29 : 2514–2525. [CrossRef] [PubMed] [Google Scholar]
- Butin-Israeli V, Adam SA, Goldman RD. Regulation of nucleotide excision repair by nuclear lamin b1. PLoS One 2013 ; 8 : e69169. [CrossRef] [Google Scholar]
- Vermeij WP, Hoeijmakers JHJ, Pothof J. Genome integrity in aging: human syndromes, mouse models, and therapeutic options. Annu Rev Pharmacol Toxicol 2016 ; 56 : 427–445. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.