Open Access
Issue
Med Sci (Paris)
Volume 36, Number 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
Page(s) 1129 - 1134
Section Mécanismes cellulaires et physiopathologie du vieillissement
DOI https://doi.org/10.1051/medsci/2020221
Published online 09 December 2020
  1. Krisko A, Radman M. Protein damage, ageing and age-related diseases. Open Biol 2019; 9 : 180249. [CrossRef] [PubMed] [Google Scholar]
  2. Radman M. Cellular parabiosis and the latency of age-related diseases. Open Biol 2019; 9. [Google Scholar]
  3. Krisko A, Radman M. Phenotypic and genetic consequences of protein damage. PLoS Genet 2013 ; 9. [Google Scholar]
  4. Kirkwood TB. Understanding the odd science of aging. Cell 2005 ; 120 : 437–447. [CrossRef] [PubMed] [Google Scholar]
  5. Krisko A, Radman M. Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proc Natl Acad Sci USA 2010 ; 107 : 14373–14377. [CrossRef] [Google Scholar]
  6. Krisko A, Leroy M, Radman M, et al. Extreme anti-oxidant protection against ionizing radiation in bdelloid rotifers. Proc Natl Acad Sci USA 2012 ; 109 : 2354–2357. [CrossRef] [Google Scholar]
  7. Sulston JE, Brenner S. The DNA of Caenorhabditis elegans. Genetics 1974; 77 : 95-LP-104. [Google Scholar]
  8. Hengartner MO. Robert Horvitz H. Programmed cell death in Caenorhabditis elegans. Curr Opin Genet Dev 1994 ; 4 : 581–586. [CrossRef] [PubMed] [Google Scholar]
  9. Metzstein MM, Stanfield GM, Horvitz HR. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 1998 ; 14 : 410–416. [CrossRef] [PubMed] [Google Scholar]
  10. Krisko A, Radman M. Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 2013 ; 5 : a012765–a012765. [CrossRef] [Google Scholar]
  11. López-otín C, Blasco MA, Partridge L, et al. The Hallmarks of aging longevity. Cell 2013 ; 153 : 1194–1217. [CrossRef] [PubMed] [Google Scholar]
  12. Speakman JR. Body size, energy metabolism and lifespan. J Exp Biol 2005; 208 : 1717-LP-30. [CrossRef] [Google Scholar]
  13. Karras GI, Yi S, Sahni N, et al. HSP90 shapes the consequences of human genetic variation. Cell 2017 ; 168 : 856–66 e12. [CrossRef] [Google Scholar]
  14. Bert P.. Expériences et considérations sur la greffe animale. J Anat Physiol 1864 ; 1 : 69–87. [Google Scholar]
  15. Nawaz M, Fatima F. Extracellular vesicles, tunneling nanotubes, and cellular interplay: synergies and missing links. Front Mol Biosci 2017 ; 4 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  16. Gerdes HH, Bukoreshtliev N V, Barroso JFV. Tunneling nanotubes: a new route for the exchange of components between animal cells. FEBS Lett 2007 ; 581 : 2194–2201. [CrossRef] [PubMed] [Google Scholar]
  17. Vignais ML, Caicedo A, Brondello JM, et al. Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy. Stem Cells Int 2017; 2017. [Google Scholar]
  18. Spees JL, Olson SD, Whitney MJ, et al. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 2006 ; 103 : 1283–1288. [CrossRef] [Google Scholar]
  19. Orgel LE. The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 1963 ; 49 : 517–521. [CrossRef] [Google Scholar]
  20. Orgel LE. The maintenance of the accuracy of protein synthesis and its relevance to ageing: a correction. Proc Natl Acad Sci USA 1970 ; 67 : 1476. [CrossRef] [Google Scholar]
  21. Oliver CN, Ahn BW, Moerman EJ, et al. Age-related changes in oxidized proteins. J Biol Chem 1987 ; 262 : 5488–5491. [CrossRef] [PubMed] [Google Scholar]
  22. Stadtman ER. Protein oxidation and aging. Free Radic Res 2006 ; 40 : 1250–1258. [CrossRef] [PubMed] [Google Scholar]
  23. De Graff AMR, Hazoglou MJ, Dill KA.. Highly charged proteins: the Achilles’ heel of aging proteomes. Structure 2016 ; 24 : 329–336. [CrossRef] [PubMed] [Google Scholar]
  24. Castro JP, Ott C, Jung T, et al. Carbonylation of the cytoskeletal protein actin leads to aggregate formation. Free Radic Biol Med 2012 ; 53 : 91625. [CrossRef] [Google Scholar]
  25. Tanase M, Urbanska AM, Zolla V, et al. Role of carbonyl modifications on aging-associated protein aggregation. Sci Rep 2016 ; 6 : 1–14. [Google Scholar]
  26. Rahim A, Saha P, Jha KK, et al. Reciprocal carbonyl-carbonyl interactions in small molecules and proteins. Nat Commun 2017 ; 8 : 1–12. [CrossRef] [Google Scholar]
  27. Karri S, Singh S, Paripati AK, et al. Adaptation of Mge1 to oxidative stress by local unfolding and altered Interaction with mitochondrial Hsp70 and Mxr2. Mitochondrion 2019 ; 46 : 140–148. [CrossRef] [PubMed] [Google Scholar]
  28. Korovila I, Hugo M, Castro JP, et al. Proteostasis, oxidative stress and aging. Redox Biol 2017 ; 13 : 550–567. [CrossRef] [PubMed] [Google Scholar]
  29. Xu J, Reumers J, Couceiro JR, et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 2011 ; 7 : 285–295. [CrossRef] [Google Scholar]
  30. Sengupta U, Nilson AN, Kayed R. The role of amyloid-beta oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 2016 ; 6 : 42–49. [CrossRef] [PubMed] [Google Scholar]
  31. Ludtmann MHR, Angelova PR, Horrocks MH, et al. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun 2018; 9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.