Open Access
Med Sci (Paris)
Volume 36, Number 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
Page(s) 1135 - 1142
Section Mécanismes cellulaires et physiopathologie du vieillissement
Published online 09 December 2020
  1. He S, Sharpless NE. Senescence in health and disease. Cell 2017 ; 169 : 1000–11. [CrossRef] [PubMed] [Google Scholar]
  2. Sagiv A, Burton DGA, Moshayev Z, et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging 2016 ; 8 : 328–344. [CrossRef] [PubMed] [Google Scholar]
  3. Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med 2018 ; 24 : 1246–1256. [CrossRef] [PubMed] [Google Scholar]
  4. Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 2015 ; 14 : 644–658. [CrossRef] [PubMed] [Google Scholar]
  5. Anderson R, Lagnado A, Maggiorani D, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J 2019 ; 38 [Google Scholar]
  6. Skowronska-Krawczyk D, Zhao L, Zhu J, et al. P16INK4a upregulation mediated by SIX6 defines retinal ganglion cell pathogenesis in glaucoma. Mol Cell 2015 ; 59 : 931–940. [CrossRef] [PubMed] [Google Scholar]
  7. Rocha LR, Huu VAN, Torre CPL, et al. Early removal of senescent cells protects retinal ganglion cells loss in experimental ocular hypertension. Aging Cell 2020; 19 : e13089. [CrossRef] [PubMed] [Google Scholar]
  8. Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 2018 ; 36 : 18–28. [CrossRef] [PubMed] [Google Scholar]
  9. Currais A, Farrokhi C, Dargusch R, et al. Fisetin Reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse. J Gerontol A Biol Sci Med Sci 2018 ; 73 : 299–307. [CrossRef] [PubMed] [Google Scholar]
  10. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016 ; 15 : 428–435. [CrossRef] [PubMed] [Google Scholar]
  11. Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine 2017 ; 21 : 21–28. [CrossRef] [PubMed] [Google Scholar]
  12. Cang S, Iragavarapu C, Savooji J, et al. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J Hematol Oncol 2015 ; 8 : 129. [CrossRef] [PubMed] [Google Scholar]
  13. Muñoz-Espín D, Rovira M, Galiana I, et al. A versatile drug delivery system targeting senescent cells. EMBO Mol Med 2018 ; 10 : e9355. [PubMed] [Google Scholar]
  14. González-Gualda E, Pàez-Ribes M, Lozano-Torres B, et al. Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell 2020; 19 : e13142. [CrossRef] [PubMed] [Google Scholar]
  15. Khan S, Zhang X, Lv D, et al. A selective BCL-X L PROTAC degrader achieves safe and potent antitumor activity. Nat Med 2019 ; 25 : 1938–1947. [CrossRef] [PubMed] [Google Scholar]
  16. He Y, Zhang X, Chang J, et al. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun 2020; 11. [Google Scholar]
  17. Ovadya Y, Landsberger T, Leins H, et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 2018; 9. [Google Scholar]
  18. Feng Z, Hu W, Teresky AK, et al. Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations. Proc Natl Acad Sci USA 2007 ; 104 : 16633–16638. [CrossRef] [Google Scholar]
  19. Arena G, Cissé MY, Pyrdziak S, et al. Mitochondrial MDM2 regulates respiratory complex I activity independently of p53. Mol Cell 2018 ; 69 : 594–609.e8. [CrossRef] [PubMed] [Google Scholar]
  20. Wiley CD, Schaum N, Alimirah F, et al. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Sci Rep 2018 ; 8 : 2410. [CrossRef] [PubMed] [Google Scholar]
  21. Jeon OH, Kim C, Laberge R-M, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 2017 ; 23 : 775–781. [CrossRef] [PubMed] [Google Scholar]
  22. He Y, Li W, Lv D, et al. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell 2020; 19 : e13117. [PubMed] [Google Scholar]
  23. Desdín-Micó G, Soto-Heredero G, Aranda JF, et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 2020; 368 : 1371–6. [CrossRef] [Google Scholar]
  24. Yao G, Yang J, Li X, et al. Blocking the utilization of glucose induces the switch from senescence to apoptosis in pseudolaric acid B-treated human lung cancer cells in vitro. Acta Pharmacol Sin 2017 ; 38 : 1401–1411. [CrossRef] [PubMed] [Google Scholar]
  25. Guerrero A, Herranz N, Sun B, et al. Cardiac glycosides are broad-spectrum senolytics. Nat Metab 2019 ; 1 : 1074–1088. [CrossRef] [PubMed] [Google Scholar]
  26. Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 2000 ; 279 : C541–C566. [CrossRef] [PubMed] [Google Scholar]
  27. Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 2020; 583 : 127–32. [CrossRef] [PubMed] [Google Scholar]
  28. Zhan J-K, Wang Y-J, Li S, et al. AMPK/TSC2/mTOR pathway regulates replicative senescence of human vascular smooth muscle cells. Exp Ther Med 2018 ; 16 : 4853–4858. [Google Scholar]
  29. Liu J, Li L. Targeting autophagy for the treatment of alzheimer’s disease: challenges and opportunities. Front Mol Neurosci 2019; 12. [PubMed] [Google Scholar]
  30. Carroll B, Nelson G, Rabanal-Ruiz Y, et al. Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. J Cell Biol 2017 ; 216 : 1949–1957. [CrossRef] [PubMed] [Google Scholar]
  31. Saxton RA, Sabatini DM. mTOR Signaling in growth, metabolism, and disease. Cell 2017 ; 168 : 960–976. [CrossRef] [PubMed] [Google Scholar]
  32. Morita M, Prudent J, Basu K, et al. mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol Cell 2017 ; 67 : 922–35.e5. [CrossRef] [PubMed] [Google Scholar]
  33. Rosario FJ, Gupta MB, Myatt L, et al. Mechanistic target of rapamycin complex 1 promotes the expression of genes encoding electron transport chain proteins and stimulates oxidative phosphorylation in primary human trophoblast cells by regulating mitochondrial biogenesis. Sci Rep 2019 ; 9 : 246. [CrossRef] [PubMed] [Google Scholar]
  34. Chung CL, Lawrence I, Hoffman M, et al. Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. GeroScience 2019 ; 41 : 861–869. [CrossRef] [PubMed] [Google Scholar]
  35. Cabreiro F, Au C, Leung K-Y, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013 ; 153 : 228–239. [CrossRef] [PubMed] [Google Scholar]
  36. Moiseeva O, Deschênes-Simard X, St-Germain E, et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 2013 ; 12 : 489–498. [CrossRef] [PubMed] [Google Scholar]
  37. Khouri H, Collin F, Bonnefont-Rousselot D, et al. Radical-induced oxidation of metformin. Eur J Biochem 2004 ; 271 : 4745–4752. [CrossRef] [PubMed] [Google Scholar]
  38. Fang J, Yang J, Wu X, et al. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell 2018 ; 17 [Google Scholar]
  39. Devasagayam TP, Kamat JP, Mohan H, et al. Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochim Biophys Acta 1996 ; 1282 : 63–70. [CrossRef] [PubMed] [Google Scholar]
  40. Moser BA, Brondello JM, Baber-Furnari B, et al. Mechanism of caffeine-induced checkpoint override in fission yeast. Mol Cell Biol 2000 ; 20 : 4288–4294. [CrossRef] [PubMed] [Google Scholar]
  41. Li YF, Ouyang SH, Tu LF, et al. Caffeine protects skin from oxidative stress-induced senescence through the activation of autophagy. Theranostics 2018 ; 8 : 5713–5730. [CrossRef] [PubMed] [Google Scholar]
  42. Benigni A, Cassis P, Conti S, et al. Sirt3 deficiency shortens life span and impairs cardiac mitochondrial function rescued by opa1 gene transfer. Antioxid Redox Signal 2019 ; 31 : 1255–1271. [CrossRef] [PubMed] [Google Scholar]
  43. Zhao W, Ma L, Cai C, et al. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-induced THP-1 macrophages. Int J Biol Sci 2019 ; 15 : 1571–1581. [CrossRef] [PubMed] [Google Scholar]
  44. Zhang N, Chu ESH, Zhang J, et al. Peroxisome proliferator activated receptor alpha inhibits hepatocarcinogenesis through mediating NF-κB signaling pathway. Oncotarget 2014 ; 5 : 8330–8340. [CrossRef] [PubMed] [Google Scholar]
  45. Vasheghani F, Monemdjou R, Fahmi H, et al. Adult cartilage-specific peroxisome proliferator-activated receptor gamma knockout mice exhibit the spontaneous osteoarthritis phenotype. Am J Pathol 2013 ; 182 : 1099–1106. [CrossRef] [PubMed] [Google Scholar]
  46. Nogueira-Recalde U, Lorenzo-Gómez I, Blanco FJ, et al. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine 2019 ; 45 : 588–605. [CrossRef] [PubMed] [Google Scholar]
  47. Xu M, Palmer AK, Ding H, et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 2015; 4 : e12997. [CrossRef] [PubMed] [Google Scholar]
  48. Xu M, Tchkonia T, Kirkland JL. Perspective: targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacol Res 2016 ; 111 : 152–154. [CrossRef] [PubMed] [Google Scholar]
  49. Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 2017 ; 23 : 1072–1079. [CrossRef] [PubMed] [Google Scholar]
  50. Liu C, Arnold R, Henriques G, et al. Inhibition of JAK-STAT signaling with baricitinib reduces inflammation and improves cellular homeostasis in progeria cells. Cells 2019; 8. [Google Scholar]
  51. Gatinois V, Desprat R, Pichard L, et al. iPSC reprogramming of fibroblasts from a patient with a Rothmund-Thomson syndrome RTS. Stem Cell Res 2020; 45 : 101807. [CrossRef] [Google Scholar]
  52. Ozsvari B, Nuttall JR, Sotgia F, et al. Azithromycin and roxithromycin define a new family of senolytic drugs that target senescent human fibroblasts. Aging 2018 ; 10 : 3294–3307. [CrossRef] [PubMed] [Google Scholar]
  53. Justice JN, Nambiar AM, Tchkonia T, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 2019 ; 40 : 554–563. [CrossRef] [PubMed] [Google Scholar]
  54. Martyanov V, Whitfield ML, Varga J. Senescence signature in skin biopsies from systemic sclerosis patients treated with senolytic therapy: potential predictor of clinical response?. Arthritis Rheumatol 2019 ; 71 : 1766–1767. [CrossRef] [Google Scholar]
  55. Hickson LJ, Prata LGPL, Bobart SA, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 2019 ; 47 : 446–456. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.