Open Access
Med Sci (Paris)
Volume 36, Number 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
Page(s) 1143 - 1154
Section Mécanismes cellulaires et physiopathologie du vieillissement
Published online 09 December 2020
  1. Rawlings ND, Salvesen G. Handbook of proteolytic enzymes, 3rd ed (vol. 2, chap. 505–513). New York : Academic Press, 2013 : 2237–85. [Google Scholar]
  2. Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity 2019 ; 50 : 1352–1364. [CrossRef] [PubMed] [Google Scholar]
  3. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2015 ; 22 : 526–539. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. Linton SD. Caspase inhibitors: a pharmaceutical industry perspective. Curr Top Med Chem 2005 ; 5 : 1697–1717. [CrossRef] [PubMed] [Google Scholar]
  5. Lee H, Shin EA, Lee JH. Caspase inhibitors: a review of recently patented compounds (2013–2015). Expert Opin Ther Pat 2018 ; 28 : 47–59. [CrossRef] [PubMed] [Google Scholar]
  6. Pop C, Salvesen GS. Human caspases: activation, specificity, and regulation. J Biol Chem 2009 ; 284 : 21777–21781. [CrossRef] [PubMed] [Google Scholar]
  7. Yuan J, Shaham S, Ledoux S, et al. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993 ; 75 : 641–652. [CrossRef] [PubMed] [Google Scholar]
  8. Degterev A, Boyce M, Yuan J. A decade of caspases. Oncogene 2003 ; 22 : 8543–8567. [CrossRef] [Google Scholar]
  9. Talanian RV, Quinlan C, Trautz S, et al. Substrate specificities of caspase family proteases. J Biol Chem 1997 ; 272 : 9677–9682. [CrossRef] [PubMed] [Google Scholar]
  10. Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and Granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997 ; 272 : 17907–17911. [CrossRef] [PubMed] [Google Scholar]
  11. McStay GP, Salvesen GS, Green DR. Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 2008 ; 15 : 322–331. [CrossRef] [PubMed] [Google Scholar]
  12. Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev 2017 ; 277 : 76–89. [CrossRef] [PubMed] [Google Scholar]
  13. Dorstyn L, Akey CW, Kumar S. New insights into apoptosome structure and function. Cell Death Differ 2018 ; 25 : 1194–1208. [CrossRef] [PubMed] [Google Scholar]
  14. Groslambert M, Py BF. NLRP3, un inflammasome sous contrôle. Med Sci (Paris) 2018 ; 34 : 47–53. [CrossRef] [EDP Sciences] [Google Scholar]
  15. He Y, Zeng MY, Yang D, et al. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 2016 ; 530 : 354–357. [CrossRef] [PubMed] [Google Scholar]
  16. Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016 ; 535 : 153–158. [CrossRef] [PubMed] [Google Scholar]
  17. Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015 ; 526 : 660–665. [CrossRef] [PubMed] [Google Scholar]
  18. Miles MA, Kitevska-Ilioski T, Hawkins CJ. Old and novel functions of caspase-2. Int Rev Cell Mol Biol 2017 ; 332 : 155–212. [CrossRef] [PubMed] [Google Scholar]
  19. Kim JY, Garcia-Carbonell R, Yamachika S, et al. ER Stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell 2018 ; 175 : 133–145. [CrossRef] [PubMed] [Google Scholar]
  20. Xu ZX, Tan JW, Xu H, et al. Caspase-2 promotes AMPA receptor internalization and cognitive flexibility via mTORC2-AKT-GSK3β signaling. Nat Commun 2019 ; 10 : 3622. [CrossRef] [Google Scholar]
  21. Carlsson Y, Schwendimann L, Vontell R, et al. Genetic inhibition of caspase-2 reduces hypoxic-ischemic and excitotoxic neonatal brain injury. Ann Neurol 2011 ; 70 : 781–789. [CrossRef] [PubMed] [Google Scholar]
  22. Ahmed Z, Kalinski H, Berry M, et al. Ocular neuroprotection by siRNA targeting Caspase-2. Cell Death Disease 2011 ; 2 : e173. [CrossRef] [Google Scholar]
  23. Pozueta J, Lefort R, Ribe EM, et al. Caspase-2 is required for dendritic spine and behavioural alterations in J20 APP transgenic mice. Nat Commun 2013 ; 4 : 1939. [CrossRef] [Google Scholar]
  24. Zhao X, Kotilinek LA, Smith B, et al. Caspase-2 cleavage of tau reversibly impairs memory. Nat Med 2016 ; 22 : 1268–1276. [CrossRef] [PubMed] [Google Scholar]
  25. Duan H, Dixit VM. RAIDD is a new death adaptor molecule. Nature 1997 ; 385 : 86–89. [CrossRef] [PubMed] [Google Scholar]
  26. Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of Caspase-2 in response to genotoxic stress. Science 2004 ; 304 : 843–846. [CrossRef] [Google Scholar]
  27. Ribe EM, Jean YY, Goldstein RL, et al. Neuronal Caspase-2 activity and function requires RAIDD, not PIDD. Biochem J 2012 ; 444 : 951–959. [Google Scholar]
  28. Ando K, Parsons MJ, Shah RB, et al. NPM1 directs PIDDosome-dependent caspase-2 activation in the nucleolus. J Cell Biol 2017 ; 216 : 1795–1810. [CrossRef] [PubMed] [Google Scholar]
  29. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998 ; 282 : 2085–2088. [CrossRef] [PubMed] [Google Scholar]
  30. Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 2013 ; 341 : 1246–1249. [CrossRef] [Google Scholar]
  31. Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014 ; 514 : 187–192. [CrossRef] [PubMed] [Google Scholar]
  32. Rathinam VAK, Zhao Y, Shao F. Innate immunity to intracellular LPS. Nat Immunol 2019 ; 20 : 527–533. [CrossRef] [PubMed] [Google Scholar]
  33. Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015 ; 526 : 666–671. [CrossRef] [PubMed] [Google Scholar]
  34. Suzuki T, Franchi L, Toma C, et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 2007 ; 3 : e111. [CrossRef] [PubMed] [Google Scholar]
  35. Lagrange B, Benaoudia S, Wallet P, et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat Commun 2018 ; 9 : 242. [CrossRef] [Google Scholar]
  36. Galluzzi L, Kepp O, Chan FK, Kroemer G. Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol 2017 ; 12 : 103–130. [CrossRef] [PubMed] [Google Scholar]
  37. Lamy L, Ngo VN, Emre NC, et al. Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell 2013 ; 23 : 435–449. [CrossRef] [PubMed] [Google Scholar]
  38. Chauvier D, Ankri S, Charriaut-Marlangue C, et al. Broad-spectrum caspase inhibitors: from myth to reality?. Cell Death Differ 2007 ; 14 : 387–391. [CrossRef] [PubMed] [Google Scholar]
  39. Roland E, Dolle C, Prasad C, et al. Pyridazinodiazepines as a high-affinity, P2–P3 peptidomimetic class of interleukin-1β-converting enzyme inhibitor. J Med Chem 1997 ; 40 : 1941–1946. [CrossRef] [PubMed] [Google Scholar]
  40. Maillard MC, Brookfield FA, Courtney SM, et al. Exploiting differences in caspase-2 and -3 S2 subsites for selectivity: structure-based design, solid-phase synthesis and in vitro activity of novel substrate-based caspase-2 inhibitors. Bioorg Med Chem 2011 ; 19 : 5833–5851. [CrossRef] [PubMed] [Google Scholar]
  41. Bosc E, Anastasie J, Soulami F, et al. Selective caspase-2 inhibition and synapse protection with a new irreversible pentapeptide derivative (ECDO 81). Cell Death Discov 2019 ; 5(suppl 1): 1–48. [CrossRef] [Google Scholar]
  42. Erlanson DA, Lam JW, Wiesmann C, et al. In situ assembly of enzyme inhibitors using extended tethering. Nat Biotechnol 2003 ; 21 : 308–314. [CrossRef] [PubMed] [Google Scholar]
  43. Choong IC, Lew W, Lee D, et al. Identification of potent and selective small-molecule inhibitors of caspase-3 through the use of extended tethering and structure-based drug design. J Med Chem 2002 ; 45 : 5005–5022. [CrossRef] [PubMed] [Google Scholar]
  44. Chapman JG, Magee WP, Stukenbrok HA, et al. A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[-(2-methoxymethylpyrrolidinyl)sulfonyl]-isatin reduces myocardial ischemic injury. Eur J Pharmacol 2002 ; 456 : 59–68. [CrossRef] [PubMed] [Google Scholar]
  45. Scott CW, Sobotka-Briner C, Wilkins DE, et al. Novel small molecule inhibitors of caspase-3 block cellular and biochemical features of apoptosis. J Pharmacol Exp Ther 2003 ; 304 : 433–440. [CrossRef] [PubMed] [Google Scholar]
  46. Nobel CS, Kimland M, Nicholson DW, et al. Disulfiram is a potent inhibitor of proteases of the caspase family. Chem Res Toxicol 1997 ; 10 : 1319–1324. [CrossRef] [PubMed] [Google Scholar]
  47. Scheer JM, Romanowski MJ, Wells JA. A common allosteric site and mechanism in caspases. Proc Natl Acad Sci USA 2006 ; 103 : 7595–7600. [CrossRef] [Google Scholar]
  48. Tubeleviciute-Aydin A, Beautrait A, Lynham J, et al. Identification of allosteric inhibitors against active caspase-6. Sci Rep 2019 ; 9 : 5504. [CrossRef] [PubMed] [Google Scholar]
  49. Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005 ; 1 : 112–119. [CrossRef] [Google Scholar]
  50. Oppong K, Ellis C, Laufersweiler M, et al. Discovery of novel conformationally restricted diazocan peptidomimetics as inhibitors of interleukin-1β synthesis. Med Chem Lett 2005 ; 15 : 4291–4294. [CrossRef] [Google Scholar]
  51. Doitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014 ; 505 : 509–514. [CrossRef] [PubMed] [Google Scholar]
  52. Flores J, Noël A, Foveau B, et al. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat Commun 2018 ; 9 : 3916. [CrossRef] [Google Scholar]
  53. McKenzie BA, Mamik MK, Saito LB, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci USA 2018 ; 115 : E6065–E6074. [CrossRef] [Google Scholar]
  54. Linton SD, Aja T, Armstrong RA, et al. First-in-class pan caspase inhibitor developed for the treatment of liver disease. J Med Chem 2005 ; 48 : 6779–6782. [CrossRef] [PubMed] [Google Scholar]
  55. Garcia-Tsao G, Bosch J, Kayali Z, et al. Randomized placebo-controlled trial of emricasan in non-alcoholic steatohepatitis (NASH) cirrhosis with severe portal hypertension. J Hepatol 2019 ; S0168–8278 : 30724. [Google Scholar]
  56. Harrison SA, Goodman Z, Jabbar A, et al. A randomized, placebo-controlled trial of emricasan in patients with NASH and F1–F3 fibrosis. J Hepatol 2019 ; S0168–8278 : 30758–30755. [Google Scholar]
  57. Vigneswara V, Ahmed Z. Long-term neuroprotection of retinal ganglion cells by inhibiting caspase-2. Cell Death Discovery 2016 ; 2 : 16044. [CrossRef] [PubMed] [Google Scholar]
  58. Chauvier D, Renolleau S, Holifanjaniaina S, et al. Targeting neonatal ischemic brain injury with a pentapeptide-based irreversible caspase inhibitor. Cell Death Disease 2011 ; 2 : e203. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.