Open Access
Med Sci (Paris)
Volume 36, Number 12, Décembre 2020
Vieillissement et mort : de la cellule à l’individu
Page(s) 1113 - 1117
Section Mécanismes cellulaires et physiopathologie du vieillissement
Published online 09 December 2020
  1. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 2014 ; 15 : 482-96. [CrossRef] [PubMed] [Google Scholar]
  2. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell 2013 ; 153 : 1194-217. [CrossRef] [PubMed] [Google Scholar]
  3. Kowald A, Kirkwood TBL. Can aging be programmed? A critical literature review. Aging Cell 2016 ; 15 : 986-98. [CrossRef] [PubMed] [Google Scholar]
  4. Mitteldorf J. Can aging be programmed? Biochem Mosc 2018 ; 83 : 1524-33. [CrossRef] [Google Scholar]
  5. Jones OR, Scheuerlein A, Salguero-Gómez R, et al. Diversity of ageing across the tree of life. Nature 2014 ; 505 : 169-73. [CrossRef] [PubMed] [Google Scholar]
  6. Valenzano DR, Aboobaker A, Seluanov A, et al. Non-canonical aging model systems and why we need them. EMBO J 2017 ; 36 : 959-63. [CrossRef] [PubMed] [Google Scholar]
  7. Harel I, Benayoun BA, Machado B, et al. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell 2015 ; 160 : 1013-26. [CrossRef] [PubMed] [Google Scholar]
  8. Ruby JG, Smith M, Buffenstein R. Naked Mole-Rat mortality rates defy gompertzian laws by not increasing with age. Elife 2018 ; 7 : e31157. [CrossRef] [PubMed] [Google Scholar]
  9. Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 2015 ; 16 : 593-610. [CrossRef] [PubMed] [Google Scholar]
  10. Cournil A, Kirkwood TB. If you would live long, choose your parents well. Trends Genet 2001 ; 17 : 233-5. [CrossRef] [PubMed] [Google Scholar]
  11. Libert S, Bonkowski MS, Pointer K, et al. Deviation of innate circadian period from 24 h reduces longevity in mice. Aging Cell 2012 ; 11 : 794-800. [CrossRef] [PubMed] [Google Scholar]
  12. Riera CE, Merkwirth C, Filho CDDM, et al. Signaling networks determining life span. Ann Rev Biochem 2016 ; 85 : 35-64. [CrossRef] [Google Scholar]
  13. Campisi J, Kapahi P, Lithgow GJ, et al. From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019 ; 1-10. [Google Scholar]
  14. Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 2016 ; 530 : 184-9. [CrossRef] [PubMed] [Google Scholar]
  15. Van Deursen JM. The role of senescent cells in ageing. Nature 2014 ; 509 : 439-46. [CrossRef] [PubMed] [Google Scholar]
  16. Grosse L, Wagner N, Emelyanov A, et al. Defined p16high senescent cell types are indispensable for mouse healthspan. Cell Metab 2020 ; 32 : 87-99.e6. [CrossRef] [PubMed] [Google Scholar]
  17. Gilson E, Géli V. How telomeres are replicated. Nat Rev Mol Cell Biol 2007 ; 8 : 825-38. [CrossRef] [PubMed] [Google Scholar]
  18. Zglinicki T von, Saretzki G, Döcke W, et al. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 1995 ; 220 : 186-93. [CrossRef] [PubMed] [Google Scholar]
  19. Ye J, Renault VM, Jamet K, et al. Transcriptional outcome of telomere signalling. Nat Rev Genet 2014 ; 15 : 491-503. [CrossRef] [PubMed] [Google Scholar]
  20. Rakshit K, Giebultowicz JM. Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila. Aging Cell 2013 ; 12 : 752-62. [CrossRef] [PubMed] [Google Scholar]
  21. Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase sirt1 modulates clock-mediated chromatin remodeling and circadian control. Cell 2008 ; 134 : 329-40. [CrossRef] [PubMed] [Google Scholar]
  22. Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator Clock is a histone acetyltransferase. Cell 2006 ; 125 : 497-508. [CrossRef] [PubMed] [Google Scholar]
  23. Lamia KA, Sachdeva UM, DiTacchio L, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009 ; 326 : 437-40. [CrossRef] [PubMed] [Google Scholar]
  24. Martínez-Zamudio RI, Roux P-F, Freitas JANLF de, et al. AP-1 imprints a reversible transcriptional programme of senescent cells. Nat Cell Biol 2020 ; 22 : 842-55. [CrossRef] [PubMed] [Google Scholar]
  25. Horvath S. DNA methylation age of human tissues and cell types. Genome biol 2013 ; 14 : R115-20. [CrossRef] [PubMed] [Google Scholar]
  26. Sahin E, DePinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 2010 ; 464 : 520-8. [CrossRef] [PubMed] [Google Scholar]
  27. Amano H, Chaudhury A, Rodriguez-Aguayo C, et al. Telomere dysfunction induces sirtuin repression that drives telomere-dependent disease. Cell Metab 2019 ; 1-27. [Google Scholar]
  28. Amano H, Sahin E. Telomeres and sirtuins: at the end we meet again. Mol Cell Oncol 2019 ; 6 : e1632613. [CrossRef] [PubMed] [Google Scholar]
  29. Baek GH, Cheng H, Kim I, Rao H. The Cdc48 protein and its cofactor vms1 are involved in cdc13 protein degradation. J Biol Chem 2012 ; 287 : 26788-95 [CrossRef] [PubMed] [Google Scholar]
  30. Tennen RI, Bua DJ, Wright WE, et al. SIRT6 is required for maintenance of telomere position effect in human cells. Nat Commun 2011 ; 2 : 433. [CrossRef] [PubMed] [Google Scholar]
  31. Palacios JA, Herrans D, de Bonis ML, et al. SIRT1 contributes to telomere maintenance and augments global homologous recombination J Cell Biol 2010 ; 191 : 1299-313. [CrossRef] [PubMed] [Google Scholar]
  32. Simonet T, Zaragosi LE, Philippe C, et al. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res 2011 ; 21 : 1028-38. [CrossRef] [PubMed] [Google Scholar]
  33. Yang D, Xiong Y, Kim H, et al. Human telomeric proteins occupy selective interstitial sites. Cell Res 2011 ; 21 : 1013-27. [CrossRef] [PubMed] [Google Scholar]
  34. Cherfils-Vicini J, Iltis C, Cervera L, et al. Cancer cells induce immune escape via glycocalyx changes controlled by the telomeric protein TRF2. EMBO J 2019 ; 38 : e100012. [CrossRef] [PubMed] [Google Scholar]
  35. Cherfils-Vicini J, Zizza P, Gilson E, Biroccio A. A novel pathway links telomeres to NK-cell activity: Implications for immunotherapy. Oncoimmunology 2014 ; 3 : e27358. [CrossRef] [PubMed] [Google Scholar]
  36. Biroccio A, Cherfils-Vicini J, Augereau A, et al. TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells. Nat Cell biol 2013 ; 15 : 818-28. [CrossRef] [PubMed] [Google Scholar]
  37. Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward. Cell 2019 ; 179 : 813-27. [CrossRef] [PubMed] [Google Scholar]
  38. Strong R, Miller RA, Astle CM, et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 2008 ; 7 : 641-50. [CrossRef] [PubMed] [Google Scholar]
  39. Khosla S, Farr JN, Tchkonia T, et al. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 2020 ; 16 : 263-75. [CrossRef] [PubMed] [Google Scholar]
  40. Ask TF, Lugo RG, Sütterlin S. The neuro-immuno-senescence integrative model (NISIM) on the negative association between parasympathetic activity and cellular senescence. Front Neurosci 2018 ; 12 : 726. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.