Open Access
Issue
Med Sci (Paris)
Volume 36, Number 11, Novembre 2020
Page(s) 1012 - 1017
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020173
Published online 05 November 2020
  1. Arrigo AP. Chaperons moléculaires et repliement des protéines : l’exemple de certaines protéines de choc thermique. Med Sci (Paris) 2005 ; 21 : 619–625. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Le Benaroudj N.. protéasome, une machinerie cellulaire qui dégrade les protéines. Med Sci (Paris) 2005 ; 21 : 115–116. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Puyal J, Ginet V, Vaslin A, Clarke P. L’autophagie remplaçant de luxe du protéasome. Med Sci (Paris) 2008 ; 24 : 19–21. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Buschiazzo A, Yefimova M, Bourmeyster N, et al. Autophagie et spermatozoïde. Med Sci (Paris) 2019 ; 35 : 852–858. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Wosen JE, Mukhopadhyay D, Macaubas C, Mellins ED. Epithelial MHC class II expression and its role in antigen presentation in the gastrointestinal and respiratory tracts. Front Immunol 2018 ; 9 : 2144. [CrossRef] [PubMed] [Google Scholar]
  6. Lee JG, Takahama S, Zhang G, et al. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat Cell Biol 2016 ; 18 : 765–776. [CrossRef] [PubMed] [Google Scholar]
  7. Rabouille C.. Pathways of unconventional protein secretion. Trends Cell Biol 2017 ; 27 : 230–240. [Google Scholar]
  8. Ghadially FN. UItrastructural pathology of the cell and matrix. 3rd ed. Londres : Butterworths, 1989. [Google Scholar]
  9. Prince JS, Kohen C, Kohen E, et al. Direct connection between myelinosomes, endoplasmic reticulum and nuclear envelope in mouse hepatocytes grown with the amphiphilic drug, quinacrine. Tissue Cell 1993 ; 25 : 103–110. [CrossRef] [PubMed] [Google Scholar]
  10. Platt FM, Boland B, van der Spoel AC. The cell biology of disease lysosomal storage disorders the cellular impact of lysosomal dysfunction. J Cell Biol 2012 ; 199 : 723–734. [CrossRef] [PubMed] [Google Scholar]
  11. Marks MS, Heijnen HF, Raposo G. Lysosome-related organelles: unusual compartments become mainstream. Curr Opin Cell Biol 2013 ; 25 : 495–505. [CrossRef] [PubMed] [Google Scholar]
  12. Whitsett JA, Weaver TE. Alveolar development and disease. Am J Respir Cell Mol Biol 2015 ; 53 : 1–7. [CrossRef] [PubMed] [Google Scholar]
  13. Yefimova MG, Béré E, Cantereau-Becq A, et al. Myelinosomes act as natural secretory organelles in Sertoli cells to prevent accumulation of aggregate-prone mutant Huntingtin and CFTR. Hum Mol Genet 2016 ; 25 : 4170–4185. [CrossRef] [PubMed] [Google Scholar]
  14. Yefimova M, Bourmeyster N. Myelinosome-driven secretion: non catabolic management of misfolded proteins-Lessons from the Sertoli cells. J Rare Dis Res Treat 2017 ; 2 : 24–27. [Google Scholar]
  15. Ravel C, Jaillard S. The Sertoli cell. Morphologie 2011 ; 95 : 151–158. [CrossRef] [PubMed] [Google Scholar]
  16. Yefimova M, Bere E, Neyroud AS, et al. Myelinosome-like vesicles in human seminal plasma: a cryo-electron microscopy study. Cryobiology 2019 ; 2240 : 30168–30163. [Google Scholar]
  17. Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles. Circ Res 2017 ; 120 : 1632–1648. [Google Scholar]
  18. Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 2016 ; 113 : E968–E977. [CrossRef] [PubMed] [Google Scholar]
  19. Le Lay S, Martinez MC, Andriantsitohaina R. Vésicules extracellulaires, biomarqueurs et bioeffecteurs du syndrome métabolique. Med Sci (Paris) 2018 ; 34 : 936–943. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Chen J, Marks E, Lai B, et al. Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS One 2013 ; 8 : e7702. [Google Scholar]
  21. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989 ; 245 : 1066–1073. [Google Scholar]
  22. Yefimova M, Bourmeyster N, Becq F, et al. Update on the cellular and molecular aspects of cystic fibrosis transmembrane conductance regulator (CFTR) and male fertility. Morphologie 2019 ; 103 : 4–10. [CrossRef] [PubMed] [Google Scholar]
  23. Kopito R.. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 2000 ; 10 : 524–530. [Google Scholar]
  24. Du K, Karp PH, Ackerley C, et al. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations. J Cyst Fibros 2015 ; 14 : 182–193. [Google Scholar]
  25. Torra R, Algaba F, Ars E, et al. Preservation of renal function in a patient with Fabry nephropathy on enzyme replacement therapy. Clin Nephrol 2008 ; 69 : 445–449. [CrossRef] [PubMed] [Google Scholar]
  26. Fervenza FC, Torra R, Warnock DG. Safety and efficacy of enzyme replacement therapy in the nephropathy of Fabry disease. Biologics 2008 ; 2 : 823–843. [PubMed] [Google Scholar]
  27. Sathasivam K, Hobbs C, Turmaine M, et al. Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet 1999 ; 8 : 813–822. [CrossRef] [PubMed] [Google Scholar]
  28. Malhotra V.. Unconventional protein secretion: an evolving mechanism. EMBO J 2013 ; 32 : 1660–1664. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.