Open Access
Med Sci (Paris)
Volume 36, Number 11, Novembre 2020
Page(s) 1004 - 1011
Section M/S Revues
Published online 05 November 2020
  1. Caro CG, Lever MJ. Factors influencing arterial wall mass transport. Biorheology 1984 ; 21 : 197–205. [CrossRef] [PubMed] [Google Scholar]
  2. Anitschkow N, Chalatow S. Ueber experimentelle cholesterinsteatose und ihre bedeutungfur die entstchung einiger pathologischer prozesse. Zentralbl Allg Pathol 1913 ; 24 : 1–9. [Google Scholar]
  3. Ross R, Glomset J, Kariya B, Harker L. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA 1974 ; 71 : 1207–1210. [CrossRef] [Google Scholar]
  4. Arnal JF, Hofmann F, Michel JB. Discrepancy between plasma and aortic wall cyclic guanosine monophosphate in an experimental model of congestive heart failure. Cardiovascular research 1993 ; 27 : 1094–1100. [CrossRef] [PubMed] [Google Scholar]
  5. Meilhac O, Ho-Tin-Noé B, Houard X, et al. Pericellular plasmin induces smooth muscle cell anoikis. Faseb J 2003 ; 17 : 1301–1303. [CrossRef] [PubMed] [Google Scholar]
  6. Lacolley P, Regnault V, Nicoletti A, et al. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res 2012 ; 95 : 194–204. [CrossRef] [PubMed] [Google Scholar]
  7. Boukais K, Borges LF, Venisse L, et al. Clearance of plasmin-PN-1 complexes by vascular smooth muscle cells in human aneurysm of the ascending aorta. Cardiovasc Pathol 2018 ; 32 : 15–25. [CrossRef] [PubMed] [Google Scholar]
  8. Ho-Tin-Noe B, Michel JB. Initiation of angiogenesis in atherosclerosis: smooth muscle cells as mediators of the angiogenic response to atheroma formation. Trends Cardiovasc Med 2011 ; 21 : 183–187. [CrossRef] [PubMed] [Google Scholar]
  9. Delbosc S, Graham Bayles R, Laschet J, et al., Erythrocyte efferocytosis by the arterial wall promotes oxidation in early-stage atheroma in humans. Front Cardiovasc Med 2017; 4 : 43. [CrossRef] [PubMed] [Google Scholar]
  10. Michel JB, Martin-Ventura JL. Red blood cell and hemoglobin in human atheroslerosis and related arterial diseases. Intern J Mol Sci 2020 (sous presse). [Google Scholar]
  11. Gomez D, Shankman LS, Nguyen AT, Owens GK. Detection of histone modifications at specific gene loci in single cells in histological sections. Nat Methods 2013 ; 10 : 171–177. [CrossRef] [PubMed] [Google Scholar]
  12. Tedgui A.. Un transporteur actif des LDL à travers l’endothélium. Med Sci (Paris) 2019 ; 35 : 632–634. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Ho-Tin-Noé B, Vo S, Bayles R, et al. Cholesterol crystallization in human atherosclerosis is triggered in smooth muscle cells during the transition from fatty streak to fibroatheroma. J Pathol 2017 ; 241 : 671–682. [PubMed] [Google Scholar]
  14. Arbustini E, Morbini P, D’Armini AM, et al. Plaque composition in plexogenic and thromboembolic pulmonary hypertension: the critical role of thrombotic material in pultaceous core formation. Heart 2002 ; 88 : 177–182. [CrossRef] [PubMed] [Google Scholar]
  15. Michel JB, Thaunat O, Houard X, et al. Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol 2007 ; 27 : 1259–1268. [CrossRef] [PubMed] [Google Scholar]
  16. Michel JB, Nicolletti A, Arnal JF. Left ventricular remodelling following experimental myocardial infarction. Eur Heart J 1995 ; 16 : (suppl I) 49–57. [Google Scholar]
  17. Hohl M, Wagner M, Reil JC, et al. HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 2013 ; 123 : 1359–1370. [CrossRef] [PubMed] [Google Scholar]
  18. Lacolley P, Regnault V, Laurent S. Mechanisms of arterial stiffening: from mechanotransduction to epigenetics. Arterioscler Thromb Vasc Biol 2020; 40 : 1055–62. [CrossRef] [PubMed] [Google Scholar]
  19. Olive M, Harten I, Mitchell R, et al. Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol 2010 ; 30 : 2301–2309. [CrossRef] [PubMed] [Google Scholar]
  20. Michel JM. William Harvey réinterprété à la lumière de l’évolution des espèces : comment et pourquoi la phylogenèse circulatoire s’intègre dans l’évolution des espèces. Med Sci (Paris) 2020; 36 : ???. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.