Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 11, Novembre 2020
Page(s) 1012 - 1017
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020173
Publié en ligne 5 novembre 2020
  1. Arrigo AP. Chaperons moléculaires et repliement des protéines : l’exemple de certaines protéines de choc thermique. Med Sci (Paris) 2005 ; 21 : 619–625. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Le Benaroudj N.. protéasome, une machinerie cellulaire qui dégrade les protéines. Med Sci (Paris) 2005 ; 21 : 115–116. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  3. Puyal J, Ginet V, Vaslin A, Clarke P. L’autophagie remplaçant de luxe du protéasome. Med Sci (Paris) 2008 ; 24 : 19–21. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Buschiazzo A, Yefimova M, Bourmeyster N, et al. Autophagie et spermatozoïde. Med Sci (Paris) 2019 ; 35 : 852–858. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Wosen JE, Mukhopadhyay D, Macaubas C, Mellins ED. Epithelial MHC class II expression and its role in antigen presentation in the gastrointestinal and respiratory tracts. Front Immunol 2018 ; 9 : 2144. [CrossRef] [PubMed] [Google Scholar]
  6. Lee JG, Takahama S, Zhang G, et al. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nat Cell Biol 2016 ; 18 : 765–776. [CrossRef] [PubMed] [Google Scholar]
  7. Rabouille C.. Pathways of unconventional protein secretion. Trends Cell Biol 2017 ; 27 : 230–240. [Google Scholar]
  8. Ghadially FN. UItrastructural pathology of the cell and matrix. 3rd ed. Londres : Butterworths, 1989. [Google Scholar]
  9. Prince JS, Kohen C, Kohen E, et al. Direct connection between myelinosomes, endoplasmic reticulum and nuclear envelope in mouse hepatocytes grown with the amphiphilic drug, quinacrine. Tissue Cell 1993 ; 25 : 103–110. [CrossRef] [PubMed] [Google Scholar]
  10. Platt FM, Boland B, van der Spoel AC. The cell biology of disease lysosomal storage disorders the cellular impact of lysosomal dysfunction. J Cell Biol 2012 ; 199 : 723–734. [CrossRef] [PubMed] [Google Scholar]
  11. Marks MS, Heijnen HF, Raposo G. Lysosome-related organelles: unusual compartments become mainstream. Curr Opin Cell Biol 2013 ; 25 : 495–505. [CrossRef] [PubMed] [Google Scholar]
  12. Whitsett JA, Weaver TE. Alveolar development and disease. Am J Respir Cell Mol Biol 2015 ; 53 : 1–7. [CrossRef] [PubMed] [Google Scholar]
  13. Yefimova MG, Béré E, Cantereau-Becq A, et al. Myelinosomes act as natural secretory organelles in Sertoli cells to prevent accumulation of aggregate-prone mutant Huntingtin and CFTR. Hum Mol Genet 2016 ; 25 : 4170–4185. [CrossRef] [PubMed] [Google Scholar]
  14. Yefimova M, Bourmeyster N. Myelinosome-driven secretion: non catabolic management of misfolded proteins-Lessons from the Sertoli cells. J Rare Dis Res Treat 2017 ; 2 : 24–27. [Google Scholar]
  15. Ravel C, Jaillard S. The Sertoli cell. Morphologie 2011 ; 95 : 151–158. [CrossRef] [PubMed] [Google Scholar]
  16. Yefimova M, Bere E, Neyroud AS, et al. Myelinosome-like vesicles in human seminal plasma: a cryo-electron microscopy study. Cryobiology 2019 ; 2240 : 30168–30163. [Google Scholar]
  17. Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles. Circ Res 2017 ; 120 : 1632–1648. [PubMed] [Google Scholar]
  18. Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 2016 ; 113 : E968–E977. [CrossRef] [PubMed] [Google Scholar]
  19. Le Lay S, Martinez MC, Andriantsitohaina R. Vésicules extracellulaires, biomarqueurs et bioeffecteurs du syndrome métabolique. Med Sci (Paris) 2018 ; 34 : 936–943. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  20. Chen J, Marks E, Lai B, et al. Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS One 2013 ; 8 : e7702. [Google Scholar]
  21. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989 ; 245 : 1066–1073. [Google Scholar]
  22. Yefimova M, Bourmeyster N, Becq F, et al. Update on the cellular and molecular aspects of cystic fibrosis transmembrane conductance regulator (CFTR) and male fertility. Morphologie 2019 ; 103 : 4–10. [CrossRef] [PubMed] [Google Scholar]
  23. Kopito R.. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 2000 ; 10 : 524–530. [Google Scholar]
  24. Du K, Karp PH, Ackerley C, et al. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations. J Cyst Fibros 2015 ; 14 : 182–193. [PubMed] [Google Scholar]
  25. Torra R, Algaba F, Ars E, et al. Preservation of renal function in a patient with Fabry nephropathy on enzyme replacement therapy. Clin Nephrol 2008 ; 69 : 445–449. [CrossRef] [PubMed] [Google Scholar]
  26. Fervenza FC, Torra R, Warnock DG. Safety and efficacy of enzyme replacement therapy in the nephropathy of Fabry disease. Biologics 2008 ; 2 : 823–843. [PubMed] [Google Scholar]
  27. Sathasivam K, Hobbs C, Turmaine M, et al. Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet 1999 ; 8 : 813–822. [CrossRef] [PubMed] [Google Scholar]
  28. Malhotra V.. Unconventional protein secretion: an evolving mechanism. EMBO J 2013 ; 32 : 1660–1664. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.