Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 11, Novembre 2020
|
|
---|---|---|
Page(s) | 1018 - 1026 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020172 | |
Publié en ligne | 5 novembre 2020 |
- Spemann H, Mangold H. Über die induktion von embryonalanlagen durch implantation artfremder organisatoren. Wihlem Roux’s Arch Entw Mech Org 1924 ; 100 : 599–638. [Google Scholar]
- Spemann H, Mangold H. Induction of embryonic primordia by implantation of organizers from a different species, 1923. Int J Dev Biol 2001 ; 45 : 13–38. [PubMed] [Google Scholar]
- Gilbert SF, Saxen L. Spemann’s organizer : models and molecules. Mech Dev 1993 ; 41 : 73–89. [CrossRef] [PubMed] [Google Scholar]
- Stern CD. Gastrulation. From cells to embryo. New York : Cold Spring Harbor Laboratory Press, 2004 : 419–32. [Google Scholar]
- Grunz H.. Neural induction in amphibians. Curr Top Dev Biol 1997 ; 35 : 191–228. [CrossRef] [PubMed] [Google Scholar]
- Grunz H.. Developmental biology of amphibians after Hans Spemann in Germany. Int J Dev Biol 2001 ; 45 : 39–50. [PubMed] [Google Scholar]
- Stern CD. Neural induction : old problem, new findings, yet more questions. Development 2005 ; 132 : 2007–2021. [CrossRef] [PubMed] [Google Scholar]
- Ruiz i Altaba A. Planar and vertical signals in the induction and patterning of the Xenopus nervous system. Development 1992; 116 : 67–80. [PubMed] [Google Scholar]
- Kintner CR, Melton DA. Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction. Development 1987 ; 99 : 311–325. [PubMed] [Google Scholar]
- Niu MC, Twitty VC. The differentiation of gastrula ectoderm in medium conditioned by axial mesoderm. Proc Natl Acad Sci USA 1953 ; 39 : 985–989. [CrossRef] [Google Scholar]
- Saxen L.. Transfilter neural induction of amphibian ectoderm. Dev Biol 1961 ; 3 : 140–152. [CrossRef] [PubMed] [Google Scholar]
- Barth LG. The nature of the action of ions as inductors. Biol Bull 1965 ; 129 : 471–481. [CrossRef] [PubMed] [Google Scholar]
- Takata K, Yamamoto K, Ozawa R. Use of lectins as probes for analyzing embryonic induction. Roux’s Arch Dev Biol 1981 ; 190 : 92–96. [CrossRef] [Google Scholar]
- Duprat AM, Gualandris L, Rouge P. Neural induction and the structure of the target cell surface. J Embryol Exp Morphol 1982 ; 70 : 171–187. [PubMed] [Google Scholar]
- Yamada T, Takata K. A technique for testing macromolecular samples in solution for morphogenetic effects on the isolated ectoderm of the amphibian gastrula. Dev Biol 1961 ; 3 : 411–423. [CrossRef] [PubMed] [Google Scholar]
- Tiedemann H, Asashima M, Grunz H, Knochel W. Neural induction in embryos. Dev Growth Differ 1998 ; 40 : 363–376. [CrossRef] [PubMed] [Google Scholar]
- Gualandris L, Rouge P, Duprat AM. Membrane changes in neural target cells studied with fluorescent lectin probes. J Embryol Exp Morphol 1983 ; 77 : 183–200. [PubMed] [Google Scholar]
- Stern CD. Mini-review : hyaluronidases in early embryonic development. Cell Biol Int Rep 1984 ; 8 : 703–717. [CrossRef] [PubMed] [Google Scholar]
- Borsotto M, Barhanin J, Norman RI, Lazdunski M. Purification of the dihydropyridine receptor of the voltage-dependent Ca2+ channel from skeletal muscle transverse tubules using +[3H]PN 200–110. Biochem Biophys Res Commun 1984 ; 122 : 1357–1366. [Google Scholar]
- Moreau M, Leclerc C, Gualandris-Parisot L, Duprat A. Increased internal Ca2+ mediates neural induction in the amphibian embryo. Proc Natl Acad Sci USA 1994 ; 91 : 12639–12643. [CrossRef] [Google Scholar]
- Born J, Tiedemann H. The mechanism of embryonic induction : isolation of an inhibitor for the vegetalizing factor. Biochim Biophys Acta 1972 ; 279 : 174–183. [PubMed] [Google Scholar]
- Geithe HP, Asashima M, Asahi KI, et al. A vegetalizing inducing factor. Isolation and chemical properties. Biochim Biophys Acta 1981 ; 676 : 350–356. [CrossRef] [PubMed] [Google Scholar]
- Asashima M, Nakano H, Shimada K, et al. Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor). Roux Arch Dev Biol 1990 ; 198 : 330–335. [CrossRef] [Google Scholar]
- Hemmati-Brivanlou A, Melton DA. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 1994 ; 77 : 273–281. [CrossRef] [PubMed] [Google Scholar]
- Miller AL, Karplus E, Jaffe LF. Imaging [Ca2+]i with aequorin using a photon imaging detector. Methods Cell Biol 1994 ; 40 : 305–338. [Google Scholar]
- Leclerc C, Webb S, Daguzan C, et al. Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos. J Cell Sci 2000 ; 113 : 3519–3529. [Google Scholar]
- Leclerc C, Daguzan C, Nicolas M, et al. L-type calcium channel activation controls the in vivo transduction of the neuralizing signal in the amphibian embryos. Mechanisms of Development 1997 ; 64 : 105–110. [CrossRef] [PubMed] [Google Scholar]
- Moreau M, Neant I, Batut J, et al. L’induction neurale chez les amphibiens : un problème de calcium ?. Med Sci (Paris) 2006 ; 22 : 1022–1025. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Néant I, Leclerc C, Batut J, et al. Une augmentation du calcium intracellulaire contrôle l’expression d’une arginine N-méthyl-transférase impliquée dans la détermination neurale chez l’embryon d’amphibien. Med Sci (Paris) 2006 ; 22 : 346–348. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005 ; 57 : 411–425. [Google Scholar]
- Néant I, Leung HC, Webb SE, et al. Trpc1 as the missing link between the Bmp and Ca. Sci Rep 2019 ; 9 : 16049. [CrossRef] [PubMed] [Google Scholar]
- Lee KW, Moreau M, Néant I, et al. FGF-activated calcium channels control neural gene expression in Xenopus. Biochim Biophys Acta 2009 ; 1793 : 1033–1040. [CrossRef] [PubMed] [Google Scholar]
- Moreau M, Leclerc C. The choice between epidermal and neural fate: a matter of calcium. Int J Dev Biol 2004 ; 48 : 75–84. [CrossRef] [PubMed] [Google Scholar]
- Murphy TH, Worley PF, Baraban JM. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 1991 ; 7 : 625–635. [CrossRef] [PubMed] [Google Scholar]
- Leclerc C, Duprat A, Moreau M. Noggin upregulates Fos expression by a calcium-mediated pathway in amphibian embryos. Dev Growth Differ 1999 ; 41 : 227–238. [CrossRef] [PubMed] [Google Scholar]
- Keller R, Danilchik M. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 1988 ; 103 : 193–209. [PubMed] [Google Scholar]
- Leclerc C, Lee M, Webb S, et al. Calcium transients triggered by planar signals induce the expression of ZIC3 gene during neural induction in Xenopus. Dev Biol 2003 ; 261 : 381–390. [CrossRef] [PubMed] [Google Scholar]
- Batut J, Vandel L, Leclerc C, et al. The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo. Proc Natl Acad Sci USA 2005 ; 102 : 15128–15133. [CrossRef] [Google Scholar]
- Mellström B, Naranjo JR. Mechanisms of Ca2+-dependent transcription. Curr Opin Neurobiol 2001 ; 11 : 312–319. [CrossRef] [PubMed] [Google Scholar]
- Néant I, Mellström B, Gonzalez P, et al. Kcnip1 a Ca²+-dependent transcriptional repressor regulates the size of the neural plate in Xenopus. Biochim Biophys Acta 2015 ; 1853 : 2077–2085. [CrossRef] [PubMed] [Google Scholar]
- Weinstein DC, Hemmati-Brivanlou A. Neural induction in Xenopus laevis: evidence for the default model. Curr Opin Neurobiol 1997 ; 7 : 7–12. [CrossRef] [PubMed] [Google Scholar]
- Otte AP, Koster CH, Snoek GT, Durston AJ. Protein kinase C mediates neural induction in Xenopus laevis. Nature 1988 ; 334 : 618–620. [Google Scholar]
- Webb SE, Miller AL. Ca2+ signalling and early embryonic patterning during zebrafish development. Clin Exp Pharmacol Physiol 2007 ; 34 : 897–904. [CrossRef] [PubMed] [Google Scholar]
- Papanayotou C, De Almeida I, Liao P, et al. Calfacilitin is a calcium channel modulator essential for initiation of neural plate development. Nat Commun 2013 ; 4 : 1837. [Google Scholar]
- Hackley C, Mulholland E, Kim GJ, et al. A transiently expressed connexin is essential for anterior neural plate development in Ciona intestinalis. Development 2013 ; 140 : 147–155. [CrossRef] [PubMed] [Google Scholar]
- Stern CD. Neural induction : 10 years on since the default model. Curr Opin Cell Biol 2006 ; 18 : 692–697. [CrossRef] [PubMed] [Google Scholar]
- Huang CT, Tao Y, Lu J, et al. Time-course gene expression profiling reveals a novel role of non-canonical WNT signaling during neural induction. Sci Rep 2016 ; 6 : 32600. [CrossRef] [PubMed] [Google Scholar]
- Løvtrup, Soren., Landström U, Løvtrup-Rein H. Polarities, cell differentiation and primary induction in the amphibian embryo. Biol Rev 1978; 53 : 1–42. [CrossRef] [Google Scholar]
- Piccolo S, Sasai Y, Lu B, De Robertis EM. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 1996 ; 86 : 589–598. [CrossRef] [PubMed] [Google Scholar]
- Zimmerman LB, De Jesus-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 1996 ; 86 : 599–606. [CrossRef] [PubMed] [Google Scholar]
- Whitaker M.. Calcium imaging. Methods Cell Biol 2004 ; 74 : 443–468. [Google Scholar]
- Nicolas MT, Moreau M. Prix Nobel de Chimie 2008 (Osumo Shimomura, Martin Chalfie et Roger Y. Tsien): Osamu Shimomura. Med Sci (Paris) 2008 ; 24 : 983–984. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.