Open Access
Issue
Med Sci (Paris)
Volume 36, Number 11, Novembre 2020
Page(s) 1018 - 1026
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020172
Published online 05 November 2020
  1. Spemann H, Mangold H. Über die induktion von embryonalanlagen durch implantation artfremder organisatoren. Wihlem Roux’s Arch Entw Mech Org 1924 ; 100 : 599–638. [Google Scholar]
  2. Spemann H, Mangold H. Induction of embryonic primordia by implantation of organizers from a different species, 1923. Int J Dev Biol 2001 ; 45 : 13–38. [PubMed] [Google Scholar]
  3. Gilbert SF, Saxen L. Spemann’s organizer : models and molecules. Mech Dev 1993 ; 41 : 73–89. [CrossRef] [PubMed] [Google Scholar]
  4. Stern CD. Gastrulation. From cells to embryo. New York : Cold Spring Harbor Laboratory Press, 2004 : 419–32. [Google Scholar]
  5. Grunz H.. Neural induction in amphibians. Curr Top Dev Biol 1997 ; 35 : 191–228. [CrossRef] [PubMed] [Google Scholar]
  6. Grunz H.. Developmental biology of amphibians after Hans Spemann in Germany. Int J Dev Biol 2001 ; 45 : 39–50. [PubMed] [Google Scholar]
  7. Stern CD. Neural induction : old problem, new findings, yet more questions. Development 2005 ; 132 : 2007–2021. [CrossRef] [PubMed] [Google Scholar]
  8. Ruiz i Altaba A. Planar and vertical signals in the induction and patterning of the Xenopus nervous system. Development 1992; 116 : 67–80. [PubMed] [Google Scholar]
  9. Kintner CR, Melton DA. Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction. Development 1987 ; 99 : 311–325. [PubMed] [Google Scholar]
  10. Niu MC, Twitty VC. The differentiation of gastrula ectoderm in medium conditioned by axial mesoderm. Proc Natl Acad Sci USA 1953 ; 39 : 985–989. [CrossRef] [Google Scholar]
  11. Saxen L.. Transfilter neural induction of amphibian ectoderm. Dev Biol 1961 ; 3 : 140–152. [CrossRef] [PubMed] [Google Scholar]
  12. Barth LG. The nature of the action of ions as inductors. Biol Bull 1965 ; 129 : 471–481. [CrossRef] [PubMed] [Google Scholar]
  13. Takata K, Yamamoto K, Ozawa R. Use of lectins as probes for analyzing embryonic induction. Roux’s Arch Dev Biol 1981 ; 190 : 92–96. [CrossRef] [Google Scholar]
  14. Duprat AM, Gualandris L, Rouge P. Neural induction and the structure of the target cell surface. J Embryol Exp Morphol 1982 ; 70 : 171–187. [Google Scholar]
  15. Yamada T, Takata K. A technique for testing macromolecular samples in solution for morphogenetic effects on the isolated ectoderm of the amphibian gastrula. Dev Biol 1961 ; 3 : 411–423. [CrossRef] [PubMed] [Google Scholar]
  16. Tiedemann H, Asashima M, Grunz H, Knochel W. Neural induction in embryos. Dev Growth Differ 1998 ; 40 : 363–376. [CrossRef] [PubMed] [Google Scholar]
  17. Gualandris L, Rouge P, Duprat AM. Membrane changes in neural target cells studied with fluorescent lectin probes. J Embryol Exp Morphol 1983 ; 77 : 183–200. [Google Scholar]
  18. Stern CD. Mini-review : hyaluronidases in early embryonic development. Cell Biol Int Rep 1984 ; 8 : 703–717. [CrossRef] [PubMed] [Google Scholar]
  19. Borsotto M, Barhanin J, Norman RI, Lazdunski M. Purification of the dihydropyridine receptor of the voltage-dependent Ca2+ channel from skeletal muscle transverse tubules using +[3H]PN 200–110. Biochem Biophys Res Commun 1984 ; 122 : 1357–1366. [Google Scholar]
  20. Moreau M, Leclerc C, Gualandris-Parisot L, Duprat A. Increased internal Ca2+ mediates neural induction in the amphibian embryo. Proc Natl Acad Sci USA 1994 ; 91 : 12639–12643. [CrossRef] [Google Scholar]
  21. Born J, Tiedemann H. The mechanism of embryonic induction : isolation of an inhibitor for the vegetalizing factor. Biochim Biophys Acta 1972 ; 279 : 174–183. [PubMed] [Google Scholar]
  22. Geithe HP, Asashima M, Asahi KI, et al. A vegetalizing inducing factor. Isolation and chemical properties. Biochim Biophys Acta 1981 ; 676 : 350–356. [CrossRef] [PubMed] [Google Scholar]
  23. Asashima M, Nakano H, Shimada K, et al. Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor). Roux Arch Dev Biol 1990 ; 198 : 330–335. [CrossRef] [Google Scholar]
  24. Hemmati-Brivanlou A, Melton DA. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 1994 ; 77 : 273–281. [CrossRef] [PubMed] [Google Scholar]
  25. Miller AL, Karplus E, Jaffe LF. Imaging [Ca2+]i with aequorin using a photon imaging detector. Methods Cell Biol 1994 ; 40 : 305–338. [Google Scholar]
  26. Leclerc C, Webb S, Daguzan C, et al. Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos. J Cell Sci 2000 ; 113 : 3519–3529. [Google Scholar]
  27. Leclerc C, Daguzan C, Nicolas M, et al. L-type calcium channel activation controls the in vivo transduction of the neuralizing signal in the amphibian embryos. Mechanisms of Development 1997 ; 64 : 105–110. [CrossRef] [PubMed] [Google Scholar]
  28. Moreau M, Neant I, Batut J, et al. L’induction neurale chez les amphibiens : un problème de calcium ?. Med Sci (Paris) 2006 ; 22 : 1022–1025. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  29. Néant I, Leclerc C, Batut J, et al. Une augmentation du calcium intracellulaire contrôle l’expression d’une arginine N-méthyl-transférase impliquée dans la détermination neurale chez l’embryon d’amphibien. Med Sci (Paris) 2006 ; 22 : 346–348. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  30. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005 ; 57 : 411–425. [Google Scholar]
  31. Néant I, Leung HC, Webb SE, et al. Trpc1 as the missing link between the Bmp and Ca. Sci Rep 2019 ; 9 : 16049. [CrossRef] [PubMed] [Google Scholar]
  32. Lee KW, Moreau M, Néant I, et al. FGF-activated calcium channels control neural gene expression in Xenopus. Biochim Biophys Acta 2009 ; 1793 : 1033–1040. [CrossRef] [PubMed] [Google Scholar]
  33. Moreau M, Leclerc C. The choice between epidermal and neural fate: a matter of calcium. Int J Dev Biol 2004 ; 48 : 75–84. [CrossRef] [PubMed] [Google Scholar]
  34. Murphy TH, Worley PF, Baraban JM. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 1991 ; 7 : 625–635. [CrossRef] [PubMed] [Google Scholar]
  35. Leclerc C, Duprat A, Moreau M. Noggin upregulates Fos expression by a calcium-mediated pathway in amphibian embryos. Dev Growth Differ 1999 ; 41 : 227–238. [CrossRef] [PubMed] [Google Scholar]
  36. Keller R, Danilchik M. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 1988 ; 103 : 193–209. [PubMed] [Google Scholar]
  37. Leclerc C, Lee M, Webb S, et al. Calcium transients triggered by planar signals induce the expression of ZIC3 gene during neural induction in Xenopus. Dev Biol 2003 ; 261 : 381–390. [CrossRef] [PubMed] [Google Scholar]
  38. Batut J, Vandel L, Leclerc C, et al. The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo. Proc Natl Acad Sci USA 2005 ; 102 : 15128–15133. [CrossRef] [Google Scholar]
  39. Mellström B, Naranjo JR. Mechanisms of Ca2+-dependent transcription. Curr Opin Neurobiol 2001 ; 11 : 312–319. [CrossRef] [PubMed] [Google Scholar]
  40. Néant I, Mellström B, Gonzalez P, et al. Kcnip1 a Ca²+-dependent transcriptional repressor regulates the size of the neural plate in Xenopus. Biochim Biophys Acta 2015 ; 1853 : 2077–2085. [CrossRef] [PubMed] [Google Scholar]
  41. Weinstein DC, Hemmati-Brivanlou A. Neural induction in Xenopus laevis: evidence for the default model. Curr Opin Neurobiol 1997 ; 7 : 7–12. [CrossRef] [PubMed] [Google Scholar]
  42. Otte AP, Koster CH, Snoek GT, Durston AJ. Protein kinase C mediates neural induction in Xenopus laevis. Nature 1988 ; 334 : 618–620. [Google Scholar]
  43. Webb SE, Miller AL. Ca2+ signalling and early embryonic patterning during zebrafish development. Clin Exp Pharmacol Physiol 2007 ; 34 : 897–904. [CrossRef] [PubMed] [Google Scholar]
  44. Papanayotou C, De Almeida I, Liao P, et al. Calfacilitin is a calcium channel modulator essential for initiation of neural plate development. Nat Commun 2013 ; 4 : 1837. [Google Scholar]
  45. Hackley C, Mulholland E, Kim GJ, et al. A transiently expressed connexin is essential for anterior neural plate development in Ciona intestinalis. Development 2013 ; 140 : 147–155. [CrossRef] [PubMed] [Google Scholar]
  46. Stern CD. Neural induction : 10 years on since the default model. Curr Opin Cell Biol 2006 ; 18 : 692–697. [CrossRef] [PubMed] [Google Scholar]
  47. Huang CT, Tao Y, Lu J, et al. Time-course gene expression profiling reveals a novel role of non-canonical WNT signaling during neural induction. Sci Rep 2016 ; 6 : 32600. [CrossRef] [PubMed] [Google Scholar]
  48. Løvtrup, Soren., Landström U, Løvtrup-Rein H. Polarities, cell differentiation and primary induction in the amphibian embryo. Biol Rev 1978; 53 : 1–42. [CrossRef] [Google Scholar]
  49. Piccolo S, Sasai Y, Lu B, De Robertis EM. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 1996 ; 86 : 589–598. [CrossRef] [PubMed] [Google Scholar]
  50. Zimmerman LB, De Jesus-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 1996 ; 86 : 599–606. [CrossRef] [PubMed] [Google Scholar]
  51. Whitaker M.. Calcium imaging. Methods Cell Biol 2004 ; 74 : 443–468. [Google Scholar]
  52. Nicolas MT, Moreau M. Prix Nobel de Chimie 2008 (Osumo Shimomura, Martin Chalfie et Roger Y. Tsien): Osamu Shimomura. Med Sci (Paris) 2008 ; 24 : 983–984. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.