Free Access
Issue
Med Sci (Paris)
Volume 36, Octobre 2020
Les jeunes contre le cancer : la Ligue en soutien
Page(s) 50 - 55
DOI https://doi.org/10.1051/medsci/2020195
Published online 14 October 2020
  1. Demaria O, Cornen S, Daeron M, et al. Harnessing innate immunity in cancer therapy. Nature 2019 ; 574 : 45–56. [Google Scholar]
  2. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016 ; 375 : 819–829. [Google Scholar]
  3. Chockley PJ, Chen J, Chen G, et al. Epithelial-mesenchymal transition leads to NK cell-mediated metastasis-pecific immunosurveillance in lung cancer. J Clin Invest 2018 ; 128 : 1384–1396. [CrossRef] [PubMed] [Google Scholar]
  4. Souza-Fonseca-Guimaraes F.. NK cell-based immunotherapies: awakening the innate anti-cancer response. Discov Med 2016 ; 21 : 197–203. [PubMed] [Google Scholar]
  5. Chretien AS, Devillier R, Fauriat C, et al. NKp46 expression on NK cells as a prognostic and predictive biomarker for response to allo-CT in patients with AML. Oncoimmunology 2017 ; 6 : e1307491. [CrossRef] [PubMed] [Google Scholar]
  6. Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol 2014 ; 192 : 5451–5458. [CrossRef] [PubMed] [Google Scholar]
  7. Pilipow K, Roberto A, Roederer M, et al. IL15 and T-cell stemness in T-cell-based cancer immunotherapy. Cancer Res 2015 ; 75 : 5187–5193. [Google Scholar]
  8. Zhang Q, Bi J, Zheng X, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol 2018 ; 19 : 723–732. [Google Scholar]
  9. Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 2019; 177 : 1701–13e16. [CrossRef] [PubMed] [Google Scholar]
  10. Chabannon C, Mfarrej B, Guia S, et al. Manufacturing natural killer cells as medicinal products. Front Immunol 2016 ; 7 : 504. [CrossRef] [PubMed] [Google Scholar]
  11. Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 2018; 23 : 181–92e5. [Google Scholar]
  12. Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med 2020; 382 : 545–53. [Google Scholar]
  13. Burga RA, Yvon E, Chorvinsky E, et al. Engineering the TGFbeta receptor to enhance the therapeutic potential of natural killer cells as an immunotherapy for neuroblastoma. Clin Cancer Res 2019 ; 25 : 4400–4412. [CrossRef] [PubMed] [Google Scholar]
  14. Castriconi R, Carrega P, Dondero A, et al. Molecular mechanisms directing migration and retention of natural killer cells in human tissues. Front Immunol 2018 ; 9 : 2324. [CrossRef] [PubMed] [Google Scholar]
  15. Cichocki F, Valamehr B, Bjordahl R, et al. GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity. Cancer Res 2017 ; 77 : 5664–5675. [Google Scholar]
  16. Lynn RC, Weber EW, Sotillo E, et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 2019 ; 576 : 293–300. [Google Scholar]
  17. Judge SJ, Murphy WJ, Canter RJ. Characterizing the dysfunctional NK cell: assessing the clinical relevance of exhaustion, anergy, and senescence. Front Cell Infect Microbiol 2020; 10 : 49. [CrossRef] [PubMed] [Google Scholar]
  18. Marusina AI, Burgess SJ, Pathmanathan I, et al. Regulation of human DAP10 gene expression in NK and T cells by Ap-1 transcription factors. J Immunol 2008 ; 180 : 409–417. [CrossRef] [PubMed] [Google Scholar]
  19. Viel S, Marcais A, Guimaraes FS, et al. TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci Signal 2016; 9 : ra19. [Google Scholar]
  20. Tang PM, Zhou S, Meng XM, et al. Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nat Commun 2017 ; 8 : 14677. [CrossRef] [PubMed] [Google Scholar]
  21. Viant C, Fenis A, Chicanne G, et al. SHP-1-mediated inhibitory signals promote responsiveness and anti-tumour functions of natural killer cells. Nat Commun 2014 ; 5 : 5108. [CrossRef] [PubMed] [Google Scholar]
  22. Celis-Gutierrez J, Boyron M, Walzer T, et al. Dok1 and Dok2 proteins regulate natural killer cell development and function. EMBO J 2014 ; 33 : 1928–1940. [Google Scholar]
  23. Kim WS, Kim MJ, Kim DO, et al. Suppressor of cytokine signaling 2 negatively regulates NK cell differentiation by iinhibiting JAK2 activity. Sci Rep 2017 ; 7 : 46153. [CrossRef] [PubMed] [Google Scholar]
  24. Palmer DC, Guittard GC, Franco Z, et al. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. J Exp Med 2015 ; 212 : 2095–2113. [CrossRef] [PubMed] [Google Scholar]
  25. Guittard G, Dios-Esponera A, Palmer DC, et al. The Cish SH2 domain is essential for PLC-gamma1 regulation in TCR stimulated CD8+ T cells. Sci Rep 2018 ; 8 : 5336. [CrossRef] [PubMed] [Google Scholar]
  26. Delconte RB, Guittard G, Goh W, et al. NK Cell priming from endogenous homeostatic signals is modulated by CIS. Front Immunol 2020; 11 : 75. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.