Free Access
Issue
Med Sci (Paris)
Volume 36, Octobre 2020
Les jeunes contre le cancer : la Ligue en soutien
Page(s) 56 - 60
DOI https://doi.org/10.1051/medsci/2020194
Published online 14 October 2020
  1. Peréz-oler R, Saltz L. Cutaneous adverse effects with HER1/EGFR-targeted agents: is there a silver lining. J Clin Oncol 2005 ; 23 : 5235–5246. [CrossRef] [PubMed] [Google Scholar]
  2. Riechelmann H, Sauter A, Golze W, et al. Phase I trial with the CD44v6- targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol 2008 ; 44 : 823–829. [CrossRef] [PubMed] [Google Scholar]
  3. Morgan RA, Yang JC, Kinato M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010 ; 18 : 843–851. [CrossRef] [PubMed] [Google Scholar]
  4. Desnoyers LR, Vasiljeva O, Richardson JH, et al. Tumor-pecific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med 2013; 5 : 207ra144. [Google Scholar]
  5. Trang VH, Zhang X, Yumul RC, et al. A coiled-coil masking domain for selective activation of therapeutic antibodies. Nat Biotechnol 2019 ; 37 : 761–765. [CrossRef] [PubMed] [Google Scholar]
  6. Zhou F, Fu T, Huang Q, et al. Hypoxia-activated PEGylated conditional aptamer/antibody for cancer imaging with improved specificity. J Am Chem Soc 2019 ; 141 : 18421–18427. [Google Scholar]
  7. Desnoyers LR, Vasiljeva O, Richardson JH, et al. Tumor-pecific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med 2013; 5 : 207ra144. [Google Scholar]
  8. Mazor Y, Sachsenmeir KF, Yang C, et al. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep 2017 ; 7 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  9. Slaga D, Ellerman D, Lombana TN, et al. Avidity-based binding to HER2 results in selective killing of HER2-overexpressing cells by anti-HER2/CD3. Sci Transl Med 2018; 10 : eaat5775. [Google Scholar]
  10. Webb BA, Chimenti M, Jacobson MP, et al. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 2011 ; 11 : 671–677. [Google Scholar]
  11. Anemone A, Consolino L, Arena F, et al. Imaging tumor acidosis: a survey of the available techniques for mapping in vivo tumor pH. Cancer Metastasis Rev 2019 ; 38 : 25–49. [CrossRef] [PubMed] [Google Scholar]
  12. Kodandapani L, Bookbinder LH, Frost GI, et al. Methods for assessing and identifying or evolving conditionally active therapeutic proteins. 2017; US9683985B2. [Google Scholar]
  13. Short JM, Chang HW, Frey G, et al. Anti-Axl antibodies, antibody fragments and their immunoconjugates and uses thereof. 2017; WO2017180842A1. [Google Scholar]
  14. Sulea T, Rohani N, Baardsnes J, et al. Structure-based engineering of pH-dependent antibody binding for selective targeting of solid-tumor microenvironment. mAbs 2020; 12 : e1682866-1-15. [Google Scholar]
  15. Philibert P, Stoessel A, Wang W, et al. A focused antibody library for selecting scFvs expressed at high levels in the cytoplasm. BMC Biotechnol 2007 ; 7 : 81. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.