Open Access
Issue
Med Sci (Paris)
Volume 36, Number 8-9, Août–Septembre 2020
Page(s) 725 - 734
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020127
Published online 21 August 2020
  1. Folling I.. The discovery of phenylketonuria. Acta Paediatrica 1994 ; 407 : suppl 4–10. [CrossRef] [PubMed] [Google Scholar]
  2. Bickel H.. Diagnosis and therapy of galactosemia and phenylketonuria. Monatsschrift Kinderheilkunde 1955 ; 103 : 81–84. [Google Scholar]
  3. Woo SL, Lidsky AS, Guttler F, et al. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 1983 ; 306 : 151–155. [Google Scholar]
  4. Danks DM, Cotton RG, Schlesinger P. Letter. Tetrahydrobiopterin treatment of variant form of phenylketonuria. Lancet 1975 ; 2 : 1043. [CrossRef] [PubMed] [Google Scholar]
  5. Anikster Y, Haack TB, Vilboux T, et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am J Hum Genet 2017 ; 100 : 257–266. [Google Scholar]
  6. Van Wegberg AMJ, MacDonald A, Ahring K, et al. The complete European guidelines on phenylketonuria : diagnosis and treatment. Orphanet J Rare Dis 2017 ; 12 : 162. [CrossRef] [PubMed] [Google Scholar]
  7. Abadie V, Berthelot J, Feillet F, et al. Neonatal screening and long-term follow-up of phenylketonuria : the French database. Early Hum Dev 2001 ; 65 : 149–158. [CrossRef] [PubMed] [Google Scholar]
  8. Muntau AC, Roschinger W, Habich M, et al. Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 2002 ; 347 : 2122–2132. [Google Scholar]
  9. Hegge KA, Horning KK, Peitz GJ, Hegge K. Sapropterin: a new therapeutic agent for phenylketonuria. Ann Pharmacother 2009 ; 43 : 1466–1473. [CrossRef] [PubMed] [Google Scholar]
  10. Jung-Klawitter S, Hubschmann OK. Analysis of catecholamines and pterins in inborn errors of monoamine neurotransmitter metabolism-from past to future. Cells 2019; 8. [Google Scholar]
  11. Abadie V, Rey F, Plainguet F, Rey J. Intellectual development after relaxing the diet at the age of 5 years in typical phenylketonuria. Arch Fr Pediatr 1992 ; 49 : 773–778. [Google Scholar]
  12. Camp KM, Parisi MA, Acosta PB, et al. Phenylketonuria scientific review conference : state of the science and future research needs. Mol Genet Metab 2014 ; 112 : 87–122. [Google Scholar]
  13. Van Spronsen FJ, van Wegberg AM, Ahring K, et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol 2017 ; 5 : 743–756. [CrossRef] [PubMed] [Google Scholar]
  14. Zurfluh MR, Zschocke J, Lindner M, et al. Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Hum Mutat 2008 ; 29 : 167–175. [CrossRef] [PubMed] [Google Scholar]
  15. Danecka MK, Woidy M, Zschocke J, et al. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. J Med Genet 2015 ; 52 : 175–185. [CrossRef] [PubMed] [Google Scholar]
  16. Jeannesson-Thivisol E, Feillet F, Chery C, et al. Genotype-phenotype associations in French patients with phenylketonuria and importance of genotype for full assessment of tetrahydrobiopterin responsiveness. Orphanet J Rare Dis 2015 ; 10 : 158. [CrossRef] [PubMed] [Google Scholar]
  17. Muntau AC, Adams DJ, Belanger-Quintana A, et al. International best practice for the evaluation of responsiveness to sapropterin dihydrochloride in patients with phenylketonuria. Mol Genet Metab 2019 ; 127 : 1–11. [Google Scholar]
  18. Blau N, Hennermann JB, Langenbeck U, Lichter-Konecki U. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol Genet Metab 2011 ; 104 : suppl S2–S9. [Google Scholar]
  19. Oussalah A, Jeannesson-Thivisol E, Chery C, et al. Population and evolutionary genetics of the PAH locus to uncover overdominance and adaptive mechanisms in phenylketonuria : results from a multiethnic study. EBioMedicine 2020; 51 : 102623. [PubMed] [Google Scholar]
  20. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet 2010 ; 376 : 1417–1427. [CrossRef] [PubMed] [Google Scholar]
  21. Cederbaum SD. Diagnosis and management of malignant hyperphenylalaninemia. N Engl J Med 1979 ; 301 : 441–442. [Google Scholar]
  22. Feillet F, van Spronsen FJ, MacDonald A, et al. Challenges and pitfalls in the management of phenylketonuria. Pediatrics 2010 ; 126 : 333–341. [PubMed] [Google Scholar]
  23. Gonzalez MJ, Gassio R, Artuch R, Campistol J. Impaired neurotransmission in early-treated phenylketonuria patients. Semin Pediatr Neurol 2016 ; 23 : 332–340. [Google Scholar]
  24. Waisbren SE, Noel K, Fahrbach K, et al. Phenylalanine blood levels and clinical outcomes in phenylketonuria : a systematic literature review and meta-analysis. Mol Genet Metab 2007 ; 92 : 63–70. [Google Scholar]
  25. Waisbren SE, Brown MJ, de Sonneville LM, Levy HL. Review of neuropsychological functioning in treated phenylketonuria : an information processing approach. Acta Paediatrica 1994 ; 407 : suppl 98–103. [CrossRef] [PubMed] [Google Scholar]
  26. Jahja R, Huijbregts SCJ, de Sonneville LMJ, et al. Cognitive profile and mental health in adult phenylketonuria: a PKU-COBESO study. Neuropsychology 2017 ; 31 : 437–447. [CrossRef] [PubMed] [Google Scholar]
  27. Rubin S, Piffer AL, Rougier MB, et al. Sight-threatening phenylketonuric encephalopathy in a young adult, reversed by diet. JIMD Rep 2013 ; 10 : 83–85. [CrossRef] [PubMed] [Google Scholar]
  28. Grisch-Chan HM, Schwank G, Harding CO, Thony B. State-of-the-art 2019 on gene therapy for phenylketonuria. Hum Gene Ther 2019 ; 30 : 1274–1283. [Google Scholar]
  29. Rouse B, Azen C, Koch R, et al. Maternal phenylketonuria collaborative study (MPKUCS) offspring: facial anomalies, malformations, and early neurological sequelae. Am J Med Genet 1997 ; 69 : 89–95. [Google Scholar]
  30. Feillet F, Abadie V, Berthelot J, et al. Maternal phenylketonuria: the French survey. Eur J Pediatr 2004 ; 163 : 540–546. [CrossRef] [PubMed] [Google Scholar]
  31. Pena MJ, Pinto A, Daly A, et al. The use of glycomacropeptide in patients with phenylketonuria: a systematic review and meta-analysis. Nutrients 2018; 10. [Google Scholar]
  32. Daly A, Evans S, Chahal S, et al. Glycomacropeptide: long-term use and impact on blood phenylalanine, growth and nutritional status in children with PKU. Orphanet J Rare Dis 2019 ; 14 : 44. [CrossRef] [PubMed] [Google Scholar]
  33. Boado RJ, Li JY, Wise P, Pardridge WM. Human LAT1 single nucleotide polymorphism N230K does not alter phenylalanine transport. Mol Genet Metab 2004 ; 83 : 306–311. [Google Scholar]
  34. Van Spronsen FJ, de Groot MJ, Hoeksma M, et al. Large neutral amino acids in the treatment of PKU: from theory to practice. J Inherit Metab Dis 2010 ; 33 : 671–676. [CrossRef] [PubMed] [Google Scholar]
  35. Thomas J, Levy H, Amato S, et al. Pegvaliase for the treatment of phenylketonuria: results of a long-term phase 3 clinical trial program (PRISM). Mol Genet Metab 2018 ; 124 : 27–38. [Google Scholar]
  36. Levy HL, Sarkissian CN, Scriver CR. Phenylalanine ammonia lyase (PAL): from discovery to enzyme substitution therapy for phenylketonuria. Mol Genet Metab 2018 ; 124 : 223–229. [Google Scholar]
  37. Levy HL, Milanowski A, Chakrapani A, et al. Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study. Lancet 2007 ; 370 : 504–510. [CrossRef] [PubMed] [Google Scholar]
  38. Muntau AC, du Moulin M, Feillet F. Diagnostic and therapeutic recommendations for the treatment of hyperphenylalaninemia in patients 0–4 years of age. Orphanet J Rare Dis 2018 ; 13 : 173. [CrossRef] [PubMed] [Google Scholar]
  39. Feillet F, Muntau AC, Debray FG, et al. Use of sapropterin dihydrochloride in maternal phenylketonuria. A European experience of eight cases. J Inherit Metab Dis 2014 ; 37 : 753–762. [CrossRef] [PubMed] [Google Scholar]
  40. Blau N, Belanger-Quintana A, Demirkol M, et al. Optimizing the use of sapropterin (BH(4)) in the management of phenylketonuria. Mol Genet Metab 2009 ; 96 : 158–163. [Google Scholar]
  41. Feillet F, Chery C, Namour F, et al. Evaluation of neonatal BH4 loading test in neonates screened for hyperphenylalaninemia. Early Hum Dev 2008 ; 84 : 561–567. [CrossRef] [PubMed] [Google Scholar]
  42. Lichter-Konecki U, Vockley J. Phenylketonuria: current treatments and future developments. Drugs 2019 ; 79 : 495–500. [CrossRef] [PubMed] [Google Scholar]
  43. Canton M, Gall DL, Feillet F, et al. Neuropsychological profile of children with early and continuously treated phenylketonuria: systematic review and future approaches. J Int Neuropsychol Soc 2019 ; 25 : 624–643. [CrossRef] [PubMed] [Google Scholar]
  44. Anderson PJ, Leuzzi V. White matter pathology in phenylketonuria. Mol Genet Metab 2010 ; 99 : suppl 1 S3–S9. [Google Scholar]
  45. Gonzalez MJ, Polo MR, Ripolles P, et al. White matter microstructural damage in early treated phenylketonuric patients. Orphanet J Rare Dis 2018 ; 13 : 188. [CrossRef] [PubMed] [Google Scholar]
  46. Adler-Abramovich L, Vaks L, Carny O, et al. Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat Chem Biol 2012 ; 8 : 701–706. [Google Scholar]
  47. Kohlschutter B, Ellerbrok M, Merkel M, et al. Phenylalanine tolerance in three phenylketonuric women pregnant with fetuses of different genetic PKU status. J Inherit Metab Dis 2009 ; 32 : suppl 1 S1–S4. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.