Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 8-9, Août–Septembre 2020
|
|
---|---|---|
Page(s) | 725 - 734 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020127 | |
Publié en ligne | 21 août 2020 |
- Folling I.. The discovery of phenylketonuria. Acta Paediatrica 1994 ; 407 : suppl 4–10. [CrossRef] [PubMed] [Google Scholar]
- Bickel H.. Diagnosis and therapy of galactosemia and phenylketonuria. Monatsschrift Kinderheilkunde 1955 ; 103 : 81–84. [Google Scholar]
- Woo SL, Lidsky AS, Guttler F, et al. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 1983 ; 306 : 151–155. [PubMed] [Google Scholar]
- Danks DM, Cotton RG, Schlesinger P. Letter. Tetrahydrobiopterin treatment of variant form of phenylketonuria. Lancet 1975 ; 2 : 1043. [CrossRef] [PubMed] [Google Scholar]
- Anikster Y, Haack TB, Vilboux T, et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am J Hum Genet 2017 ; 100 : 257–266. [Google Scholar]
- Van Wegberg AMJ, MacDonald A, Ahring K, et al. The complete European guidelines on phenylketonuria : diagnosis and treatment. Orphanet J Rare Dis 2017 ; 12 : 162. [CrossRef] [PubMed] [Google Scholar]
- Abadie V, Berthelot J, Feillet F, et al. Neonatal screening and long-term follow-up of phenylketonuria : the French database. Early Hum Dev 2001 ; 65 : 149–158. [CrossRef] [PubMed] [Google Scholar]
- Muntau AC, Roschinger W, Habich M, et al. Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N Engl J Med 2002 ; 347 : 2122–2132. [Google Scholar]
- Hegge KA, Horning KK, Peitz GJ, Hegge K. Sapropterin: a new therapeutic agent for phenylketonuria. Ann Pharmacother 2009 ; 43 : 1466–1473. [CrossRef] [PubMed] [Google Scholar]
- Jung-Klawitter S, Hubschmann OK. Analysis of catecholamines and pterins in inborn errors of monoamine neurotransmitter metabolism-from past to future. Cells 2019; 8. [Google Scholar]
- Abadie V, Rey F, Plainguet F, Rey J. Intellectual development after relaxing the diet at the age of 5 years in typical phenylketonuria. Arch Fr Pediatr 1992 ; 49 : 773–778. [Google Scholar]
- Camp KM, Parisi MA, Acosta PB, et al. Phenylketonuria scientific review conference : state of the science and future research needs. Mol Genet Metab 2014 ; 112 : 87–122. [Google Scholar]
- Van Spronsen FJ, van Wegberg AM, Ahring K, et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol 2017 ; 5 : 743–756. [CrossRef] [PubMed] [Google Scholar]
- Zurfluh MR, Zschocke J, Lindner M, et al. Molecular genetics of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Hum Mutat 2008 ; 29 : 167–175. [CrossRef] [PubMed] [Google Scholar]
- Danecka MK, Woidy M, Zschocke J, et al. Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria. J Med Genet 2015 ; 52 : 175–185. [CrossRef] [PubMed] [Google Scholar]
- Jeannesson-Thivisol E, Feillet F, Chery C, et al. Genotype-phenotype associations in French patients with phenylketonuria and importance of genotype for full assessment of tetrahydrobiopterin responsiveness. Orphanet J Rare Dis 2015 ; 10 : 158. [CrossRef] [PubMed] [Google Scholar]
- Muntau AC, Adams DJ, Belanger-Quintana A, et al. International best practice for the evaluation of responsiveness to sapropterin dihydrochloride in patients with phenylketonuria. Mol Genet Metab 2019 ; 127 : 1–11. [Google Scholar]
- Blau N, Hennermann JB, Langenbeck U, Lichter-Konecki U. Diagnosis, classification, and genetics of phenylketonuria and tetrahydrobiopterin (BH4) deficiencies. Mol Genet Metab 2011 ; 104 : suppl S2–S9. [Google Scholar]
- Oussalah A, Jeannesson-Thivisol E, Chery C, et al. Population and evolutionary genetics of the PAH locus to uncover overdominance and adaptive mechanisms in phenylketonuria : results from a multiethnic study. EBioMedicine 2020; 51 : 102623. [PubMed] [Google Scholar]
- Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet 2010 ; 376 : 1417–1427. [CrossRef] [PubMed] [Google Scholar]
- Cederbaum SD. Diagnosis and management of malignant hyperphenylalaninemia. N Engl J Med 1979 ; 301 : 441–442. [Google Scholar]
- Feillet F, van Spronsen FJ, MacDonald A, et al. Challenges and pitfalls in the management of phenylketonuria. Pediatrics 2010 ; 126 : 333–341. [PubMed] [Google Scholar]
- Gonzalez MJ, Gassio R, Artuch R, Campistol J. Impaired neurotransmission in early-treated phenylketonuria patients. Semin Pediatr Neurol 2016 ; 23 : 332–340. [PubMed] [Google Scholar]
- Waisbren SE, Noel K, Fahrbach K, et al. Phenylalanine blood levels and clinical outcomes in phenylketonuria : a systematic literature review and meta-analysis. Mol Genet Metab 2007 ; 92 : 63–70. [Google Scholar]
- Waisbren SE, Brown MJ, de Sonneville LM, Levy HL. Review of neuropsychological functioning in treated phenylketonuria : an information processing approach. Acta Paediatrica 1994 ; 407 : suppl 98–103. [CrossRef] [PubMed] [Google Scholar]
- Jahja R, Huijbregts SCJ, de Sonneville LMJ, et al. Cognitive profile and mental health in adult phenylketonuria: a PKU-COBESO study. Neuropsychology 2017 ; 31 : 437–447. [CrossRef] [PubMed] [Google Scholar]
- Rubin S, Piffer AL, Rougier MB, et al. Sight-threatening phenylketonuric encephalopathy in a young adult, reversed by diet. JIMD Rep 2013 ; 10 : 83–85. [Google Scholar]
- Grisch-Chan HM, Schwank G, Harding CO, Thony B. State-of-the-art 2019 on gene therapy for phenylketonuria. Hum Gene Ther 2019 ; 30 : 1274–1283. [Google Scholar]
- Rouse B, Azen C, Koch R, et al. Maternal phenylketonuria collaborative study (MPKUCS) offspring: facial anomalies, malformations, and early neurological sequelae. Am J Med Genet 1997 ; 69 : 89–95. [Google Scholar]
- Feillet F, Abadie V, Berthelot J, et al. Maternal phenylketonuria: the French survey. Eur J Pediatr 2004 ; 163 : 540–546. [CrossRef] [PubMed] [Google Scholar]
- Pena MJ, Pinto A, Daly A, et al. The use of glycomacropeptide in patients with phenylketonuria: a systematic review and meta-analysis. Nutrients 2018; 10. [Google Scholar]
- Daly A, Evans S, Chahal S, et al. Glycomacropeptide: long-term use and impact on blood phenylalanine, growth and nutritional status in children with PKU. Orphanet J Rare Dis 2019 ; 14 : 44. [CrossRef] [PubMed] [Google Scholar]
- Boado RJ, Li JY, Wise P, Pardridge WM. Human LAT1 single nucleotide polymorphism N230K does not alter phenylalanine transport. Mol Genet Metab 2004 ; 83 : 306–311. [Google Scholar]
- Van Spronsen FJ, de Groot MJ, Hoeksma M, et al. Large neutral amino acids in the treatment of PKU: from theory to practice. J Inherit Metab Dis 2010 ; 33 : 671–676. [CrossRef] [PubMed] [Google Scholar]
- Thomas J, Levy H, Amato S, et al. Pegvaliase for the treatment of phenylketonuria: results of a long-term phase 3 clinical trial program (PRISM). Mol Genet Metab 2018 ; 124 : 27–38. [Google Scholar]
- Levy HL, Sarkissian CN, Scriver CR. Phenylalanine ammonia lyase (PAL): from discovery to enzyme substitution therapy for phenylketonuria. Mol Genet Metab 2018 ; 124 : 223–229. [Google Scholar]
- Levy HL, Milanowski A, Chakrapani A, et al. Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study. Lancet 2007 ; 370 : 504–510. [CrossRef] [PubMed] [Google Scholar]
- Muntau AC, du Moulin M, Feillet F. Diagnostic and therapeutic recommendations for the treatment of hyperphenylalaninemia in patients 0–4 years of age. Orphanet J Rare Dis 2018 ; 13 : 173. [CrossRef] [PubMed] [Google Scholar]
- Feillet F, Muntau AC, Debray FG, et al. Use of sapropterin dihydrochloride in maternal phenylketonuria. A European experience of eight cases. J Inherit Metab Dis 2014 ; 37 : 753–762. [CrossRef] [PubMed] [Google Scholar]
- Blau N, Belanger-Quintana A, Demirkol M, et al. Optimizing the use of sapropterin (BH(4)) in the management of phenylketonuria. Mol Genet Metab 2009 ; 96 : 158–163. [Google Scholar]
- Feillet F, Chery C, Namour F, et al. Evaluation of neonatal BH4 loading test in neonates screened for hyperphenylalaninemia. Early Hum Dev 2008 ; 84 : 561–567. [CrossRef] [PubMed] [Google Scholar]
- Lichter-Konecki U, Vockley J. Phenylketonuria: current treatments and future developments. Drugs 2019 ; 79 : 495–500. [CrossRef] [PubMed] [Google Scholar]
- Canton M, Gall DL, Feillet F, et al. Neuropsychological profile of children with early and continuously treated phenylketonuria: systematic review and future approaches. J Int Neuropsychol Soc 2019 ; 25 : 624–643. [CrossRef] [PubMed] [Google Scholar]
- Anderson PJ, Leuzzi V. White matter pathology in phenylketonuria. Mol Genet Metab 2010 ; 99 : suppl 1 S3–S9. [Google Scholar]
- Gonzalez MJ, Polo MR, Ripolles P, et al. White matter microstructural damage in early treated phenylketonuric patients. Orphanet J Rare Dis 2018 ; 13 : 188. [CrossRef] [PubMed] [Google Scholar]
- Adler-Abramovich L, Vaks L, Carny O, et al. Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat Chem Biol 2012 ; 8 : 701–706. [Google Scholar]
- Kohlschutter B, Ellerbrok M, Merkel M, et al. Phenylalanine tolerance in three phenylketonuric women pregnant with fetuses of different genetic PKU status. J Inherit Metab Dis 2009 ; 32 : suppl 1 S1–S4. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.