Open Access
Issue
Med Sci (Paris)
Volume 36, Number 8-9, Août–Septembre 2020
Page(s) 717 - 724
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020126
Published online 21 August 2020
  1. Minard P. L’évolution dirigée des protéines. Med Sci (Paris) 2019 ; 35 : 169–175. [Google Scholar]
  2. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985 ; 228 : 1315–1317. [Google Scholar]
  3. Lowman HB, Wells JA. Affinity maturation of human growth hormone by monovalent phage display. J Mol Biol 1993 ; 234 : 564–578. [Google Scholar]
  4. Clackson T, Wells JA. In vitro selection from protein and peptide libraries. Trends Biotechnol 1994 ; 12 : 173–184. [CrossRef] [PubMed] [Google Scholar]
  5. Ledsgaard L, Kilstrup M, Karatt-Vellatt A, et al. Basics of antibody phage display technology. Toxins (Basel). 2018; 10. [Google Scholar]
  6. Mattheakis LC, Bhatt RR, Dower WJ. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci USA 1994 ; 91 : 9022–9026. [Google Scholar]
  7. Tsai A, Kornberg G, Johansson M, et al. The dynamics of SecM-induced translational stalling. Cell Rep 2014 ; 7 : 1521–1533. [CrossRef] [PubMed] [Google Scholar]
  8. Zahnd C, Amstutz P, Plückthun A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 2007 ; 4 : 269–279. [CrossRef] [PubMed] [Google Scholar]
  9. Li R, Kang G, Hu M, et al. Ribosome display: a potent display technology used for selecting and evolving specific binders with desired properties. Mol Biotechnol 2018 ; 61 : 60–71. [Google Scholar]
  10. Hanes J, Plückthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 1997 ; 94 : 4937–4942. [Google Scholar]
  11. Cong C, Yu X, He Y, et al. Cell-free ribosome display and selection of antibodies on arrayed antigens. Proteomics 2016 ; 16 : 1291–1296. [CrossRef] [PubMed] [Google Scholar]
  12. Kunamneni A, Ye C, Bradfute SB, et al. Ribosome display for the rapid generation of high-affinity Zika-neutralizing single-chain antibodies. PLoS One 2018 ; 13 : e0205743. [CrossRef] [PubMed] [Google Scholar]
  13. Morrison C.. Nanobody approval gives domain antibodies a boost. Nat Rev Drug Discov 2019 ; 18 : 485–487. [CrossRef] [PubMed] [Google Scholar]
  14. Ferrari D, Garrapa V, Locatelli M, et al. A novel nanobody scaffold optimized for bacterial expression and suitable for the construction of ribosome display libraries. Mol Biotechnol 2020; 62 : 43–55. [CrossRef] [PubMed] [Google Scholar]
  15. Steiner D, Forrer P, Plückthun A. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J Mol Biol 2008 ; 382 : 1211–1227. [Google Scholar]
  16. Koide A, Gilbreth RN, Esaki K, et al. High-affinity single-domain binding proteins with a binary-code interface. Proc Natl Acad Sci USA 2007 ; 104 : 6632–6637. [Google Scholar]
  17. Kalichuk V, Kambarev S, Béhar G, et al. Affitins: ribosome display for selection of Aho7c-based affinity proteins. Methods Mol Biol 2020; 2070 : 19–41. [CrossRef] [PubMed] [Google Scholar]
  18. Kunimoto D, Ohji M, Maturi RK, et al. Evaluation of abicipar pegol (an anti-VEGF DARPin therapeutic) in patients with neovascular age-related macular degeneration: studies in Japan and the United States. Ophthalmic Surg Lasers Imaging Retina 2019 ; 50 : e10–e22. [CrossRef] [PubMed] [Google Scholar]
  19. Moisseiev E, Loewenstein A. Abicipar pegol: a novel anti-VEGF therapy with a long duration of action. Eye 2019 ; 1–2. [Google Scholar]
  20. Grönwall C, Sjöberg A, Ramström M, et al. Affibody-mediated transferrin depletion for proteomics applications. Biotechnol J 2007 ; 2 : 1389–1398. [Google Scholar]
  21. Lee SB, Hassan M, Fisher R, et al. Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin Cancer Res 2008 ; 14 : 3840–3849. [CrossRef] [PubMed] [Google Scholar]
  22. Goux M, Becker G, Gorré H, et al. Nanofitin as a new molecular-imaging agent for the diagnosis of epidermal growth factor receptor over-expressing tumors. Bioconjug Chem 2017 ; 28 : 2361–2371. [CrossRef] [PubMed] [Google Scholar]
  23. Chen F, Zhao Y, Liu M, et al. Functional selection of hepatitis C virus envelope E2-binding peptide ligands by using ribosome display. Antimicrob Agents Chemother 2010 ; 54 : 3355–3364. [CrossRef] [PubMed] [Google Scholar]
  24. Osada E, Shimizu Y, Akbar BK, et al. Epitope mapping using ribosome display in a reconstituted cell-free protein synthesis system. J Biochem 2009 ; 145 : 693–700. [CrossRef] [PubMed] [Google Scholar]
  25. Skirgaila R, Pudzaitis V, Paliksa S, et al. Compartmentalization of destabilized enzyme-mRNA-ribosome complexes generated by ribosome display: a novel tool for the directed evolution of enzymes. Protein Eng Des Sel 2013 ; 26 : 453–461. [CrossRef] [PubMed] [Google Scholar]
  26. Amstutz P, Pelletier JN, Guggisberg A, et al. In vitro selection for catalytic activity with ribosome display. J Am Chem Soc 2002 ; 124 : 9396–9403. [Google Scholar]
  27. Goldman DH, Kaiser CM, Milin A, et al. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 2015 ; 348 : 457–460. [Google Scholar]
  28. Ohashi H, Kanamori T, Osada E, et al. Peptide screening using PURE ribosome display. Methods Mol Biol 2012 ; 251–259. [Google Scholar]
  29. Suchsland R, Appel B, Müller S. Preparation of trinucleotide phosphoramidites as synthons for the synthesis of gene libraries. Beilstein J Org Chem 2018 ; 14 : 397–406. [Google Scholar]
  30. Lagoutte P, Lugari A, Elie C, et al. Combination of ribosome display and next generation sequencing as a powerful method for identification of affibody binders against β-lactamase CTX-M15. N Biotechnol 2019 ; 50 : 60–69. [CrossRef] [PubMed] [Google Scholar]
  31. Beck A, Pèlegrin A. Watier H (coordinateurs). Anticorps monoclonaux en thérapeutique. Med Sci (Paris) 2019 ; 35 : 915–1232. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.