Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 8-9, Août–Septembre 2020
Page(s) 717 - 724
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020126
Publié en ligne 21 août 2020
  1. Minard P. L’évolution dirigée des protéines. Med Sci (Paris) 2019 ; 35 : 169–175. [CrossRef] [Google Scholar]
  2. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985 ; 228 : 1315–1317. [Google Scholar]
  3. Lowman HB, Wells JA. Affinity maturation of human growth hormone by monovalent phage display. J Mol Biol 1993 ; 234 : 564–578. [Google Scholar]
  4. Clackson T, Wells JA. In vitro selection from protein and peptide libraries. Trends Biotechnol 1994 ; 12 : 173–184. [CrossRef] [PubMed] [Google Scholar]
  5. Ledsgaard L, Kilstrup M, Karatt-Vellatt A, et al. Basics of antibody phage display technology. Toxins (Basel). 2018; 10. [Google Scholar]
  6. Mattheakis LC, Bhatt RR, Dower WJ. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci USA 1994 ; 91 : 9022–9026. [CrossRef] [Google Scholar]
  7. Tsai A, Kornberg G, Johansson M, et al. The dynamics of SecM-induced translational stalling. Cell Rep 2014 ; 7 : 1521–1533. [CrossRef] [PubMed] [Google Scholar]
  8. Zahnd C, Amstutz P, Plückthun A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 2007 ; 4 : 269–279. [CrossRef] [PubMed] [Google Scholar]
  9. Li R, Kang G, Hu M, et al. Ribosome display: a potent display technology used for selecting and evolving specific binders with desired properties. Mol Biotechnol 2018 ; 61 : 60–71. [Google Scholar]
  10. Hanes J, Plückthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci USA 1997 ; 94 : 4937–4942. [CrossRef] [Google Scholar]
  11. Cong C, Yu X, He Y, et al. Cell-free ribosome display and selection of antibodies on arrayed antigens. Proteomics 2016 ; 16 : 1291–1296. [CrossRef] [PubMed] [Google Scholar]
  12. Kunamneni A, Ye C, Bradfute SB, et al. Ribosome display for the rapid generation of high-affinity Zika-neutralizing single-chain antibodies. PLoS One 2018 ; 13 : e0205743. [CrossRef] [PubMed] [Google Scholar]
  13. Morrison C.. Nanobody approval gives domain antibodies a boost. Nat Rev Drug Discov 2019 ; 18 : 485–487. [CrossRef] [PubMed] [Google Scholar]
  14. Ferrari D, Garrapa V, Locatelli M, et al. A novel nanobody scaffold optimized for bacterial expression and suitable for the construction of ribosome display libraries. Mol Biotechnol 2020; 62 : 43–55. [CrossRef] [PubMed] [Google Scholar]
  15. Steiner D, Forrer P, Plückthun A. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J Mol Biol 2008 ; 382 : 1211–1227. [Google Scholar]
  16. Koide A, Gilbreth RN, Esaki K, et al. High-affinity single-domain binding proteins with a binary-code interface. Proc Natl Acad Sci USA 2007 ; 104 : 6632–6637. [CrossRef] [Google Scholar]
  17. Kalichuk V, Kambarev S, Béhar G, et al. Affitins: ribosome display for selection of Aho7c-based affinity proteins. Methods Mol Biol 2020; 2070 : 19–41. [CrossRef] [PubMed] [Google Scholar]
  18. Kunimoto D, Ohji M, Maturi RK, et al. Evaluation of abicipar pegol (an anti-VEGF DARPin therapeutic) in patients with neovascular age-related macular degeneration: studies in Japan and the United States. Ophthalmic Surg Lasers Imaging Retina 2019 ; 50 : e10–e22. [CrossRef] [PubMed] [Google Scholar]
  19. Moisseiev E, Loewenstein A. Abicipar pegol: a novel anti-VEGF therapy with a long duration of action. Eye 2019 ; 1–2. [Google Scholar]
  20. Grönwall C, Sjöberg A, Ramström M, et al. Affibody-mediated transferrin depletion for proteomics applications. Biotechnol J 2007 ; 2 : 1389–1398. [Google Scholar]
  21. Lee SB, Hassan M, Fisher R, et al. Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin Cancer Res 2008 ; 14 : 3840–3849. [CrossRef] [PubMed] [Google Scholar]
  22. Goux M, Becker G, Gorré H, et al. Nanofitin as a new molecular-imaging agent for the diagnosis of epidermal growth factor receptor over-expressing tumors. Bioconjug Chem 2017 ; 28 : 2361–2371. [CrossRef] [PubMed] [Google Scholar]
  23. Chen F, Zhao Y, Liu M, et al. Functional selection of hepatitis C virus envelope E2-binding peptide ligands by using ribosome display. Antimicrob Agents Chemother 2010 ; 54 : 3355–3364. [CrossRef] [PubMed] [Google Scholar]
  24. Osada E, Shimizu Y, Akbar BK, et al. Epitope mapping using ribosome display in a reconstituted cell-free protein synthesis system. J Biochem 2009 ; 145 : 693–700. [CrossRef] [PubMed] [Google Scholar]
  25. Skirgaila R, Pudzaitis V, Paliksa S, et al. Compartmentalization of destabilized enzyme-mRNA-ribosome complexes generated by ribosome display: a novel tool for the directed evolution of enzymes. Protein Eng Des Sel 2013 ; 26 : 453–461. [CrossRef] [PubMed] [Google Scholar]
  26. Amstutz P, Pelletier JN, Guggisberg A, et al. In vitro selection for catalytic activity with ribosome display. J Am Chem Soc 2002 ; 124 : 9396–9403. [Google Scholar]
  27. Goldman DH, Kaiser CM, Milin A, et al. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 2015 ; 348 : 457–460. [Google Scholar]
  28. Ohashi H, Kanamori T, Osada E, et al. Peptide screening using PURE ribosome display. Methods Mol Biol 2012 ; 251–259. [Google Scholar]
  29. Suchsland R, Appel B, Müller S. Preparation of trinucleotide phosphoramidites as synthons for the synthesis of gene libraries. Beilstein J Org Chem 2018 ; 14 : 397–406. [PubMed] [Google Scholar]
  30. Lagoutte P, Lugari A, Elie C, et al. Combination of ribosome display and next generation sequencing as a powerful method for identification of affibody binders against β-lactamase CTX-M15. N Biotechnol 2019 ; 50 : 60–69. [CrossRef] [PubMed] [Google Scholar]
  31. Beck A, Pèlegrin A. Watier H (coordinateurs). Anticorps monoclonaux en thérapeutique. Med Sci (Paris) 2019 ; 35 : 915–1232. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.