Open Access
Med Sci (Paris)
Volume 36, Number 8-9, Août–Septembre 2020
Page(s) 735 - 746
Section M/S Revues
Published online 21 August 2020
  1. Ramakrishnan B, Ramasamy V, Qasba PK. Structural snapshots of β-1,4-galactosyltransferase-I along the kinetic pathway. J Mol Biol 2006 ; 357 : 1619–1633. [Google Scholar]
  2. Hadley B, Litfin T, Day CJ, et al. Nucleotide sugar transporter SLC35 family structure and function. Comput Struct Biotechnol J 2019 ; 17 : 1123–1134. [CrossRef] [PubMed] [Google Scholar]
  3. Brockhausen I, Schutzbach J, Kuhns W. Glycoproteins and their relationship to human disease. Cells Tissues Organs 1998 ; 161 : 36–78. [Google Scholar]
  4. Schachter H, Freeze HH. Glycosylation diseases: Quo vadis?. Biochim Biophys Acta 2009 ; 1792 : 925–930. [CrossRef] [PubMed] [Google Scholar]
  5. Jaeken J, Vanderschueren-Lodeweyckx M, Casaer P. Familial psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TGB-deficiency, increased serum arylsulphatase A and increased CSF protein: a new syndrome?. Pediatr Res 1980 ; 14 : 179. [Google Scholar]
  6. Jaeken J, van Eijk HG, van der Heul C, et al. Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta 1984 ; 144 : 245–247. [Google Scholar]
  7. Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett 1995 ; 377 : 318–320. [CrossRef] [PubMed] [Google Scholar]
  8. Matthijs G, Schollen E, Pardon E, et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet 1997 ; 16 : 88–92. [Google Scholar]
  9. Dupré T, Lavieu G, Moore S, et al. Les anomalies congénitales de glycosylation des N-glycosylprotéines. Med/Sci (Paris) 2004 ; 20 : 331–338. [CrossRef] [Google Scholar]
  10. Ng BG, Freeze HH. Perspectives on glycosylation and its congenital disorders. Trends Genet 2018 ; 34 : 466–476. [CrossRef] [PubMed] [Google Scholar]
  11. Francisco R, Marques-da-Silva D, Brasil S, et al. The challenge of CDG diagnosis. Mol Genet Metab 2019 ; 126 : 1–5. [Google Scholar]
  12. Wopereis S.. Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin Chem 2003 ; 49 : 1839–1845. [CrossRef] [PubMed] [Google Scholar]
  13. Jaeken J, Hennet T, Freeze HH, et al. On the nomenclature of congenital disorders of glycosylation (CDG). J Inherit Metab Dis. 2008 ; 31 : 669–672. [CrossRef] [PubMed] [Google Scholar]
  14. Jaeken J, Hennet T, Matthijs G, et al. CDG nomenclature: time for a change!. Biochim Biophys Acta 2009 ; 1792 : 825–826. [CrossRef] [PubMed] [Google Scholar]
  15. Jaeken J.. Congenital disorders of glycosylation (CDG): it’s (nearly) all in it!. J Inherit Metab Dis 2011 ; 34 : 853–858. [CrossRef] [PubMed] [Google Scholar]
  16. Potelle S, Klein A, Foulquier F. Golgi post-translational modifications and associated diseases. J Inherit Metab Dis 2015 ; 38 : 741–751. [CrossRef] [PubMed] [Google Scholar]
  17. Willett R, Ungar D, Lupashin V. The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 2013 ; 140 : 271–283. [CrossRef] [PubMed] [Google Scholar]
  18. Wu X, Steet RA, Bohorov O, et al. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 2004 ; 10 : 518–523. [CrossRef] [PubMed] [Google Scholar]
  19. Foulquier F, Vasile E, Schollen E, et al. Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci USA 2006 ; 03 : 3764–3769. [CrossRef] [Google Scholar]
  20. Foulquier F, Ungar D, Reynders E, et al. A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum Mol Genet 2007 ; 16 : 717–730. [CrossRef] [PubMed] [Google Scholar]
  21. Kranz C, Ng BG, Sun L, et al. COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum Mol Genet 2007 ; 16 : 731–741. [CrossRef] [PubMed] [Google Scholar]
  22. Reynders E, Foulquier F, Leão Teles E, et al. Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Hum Mol Genet 2009 ; 18 : 3244–3256. [CrossRef] [PubMed] [Google Scholar]
  23. Paesold-Burda P, Maag C, Troxler H, et al. Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum Mol Genet 2009 ; 18 : 4350–4356. [CrossRef] [PubMed] [Google Scholar]
  24. Lubbehusen J, Thiel C, Rind N, et al. Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum Mol Genet 2010 ; 19 : 3623–3633. [CrossRef] [PubMed] [Google Scholar]
  25. Kodera H, Ando N, Yuasa I, et al. Mutations in COG2 encoding a subunit of the conserved oligomeric golgi complex cause a congenital disorder of glycosylation: COG2 mutations cause congenital disorder of glycosylation. Clin Genet 2015 ; 87 : 455–460. [CrossRef] [PubMed] [Google Scholar]
  26. Pokrovskaya ID, Willett R, Smith RD, et al. Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 2011 ; 21 : 1554–1569. [CrossRef] [PubMed] [Google Scholar]
  27. Shestakova A, Zolov S, Lupashin V. COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation: COG complex and Golgi glycosylation. Traffic 2006 ; 7 : 191–204. [CrossRef] [PubMed] [Google Scholar]
  28. Kellokumpu S.. Golgi pH, ion and redox homeostasis: how much do they really matter?. Front Cell Dev Biol 2019 ; 7 : 93. [CrossRef] [PubMed] [Google Scholar]
  29. Rivinoja A, Hassinen A, Kokkonen N, et al. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol 2009 ; 220 : 144–154. [Google Scholar]
  30. Rivinoja A, Pujol FM, Hassinen A, et al. Golgi pH, its regulation and roles in human disease. Ann Med 2012 ; 44 : 542–554. [Google Scholar]
  31. Guillard M, Dimopoulou A, Fischer B, et al. Vacuolar H+-ATPase meets glycosylation in patients with cutis laxa. Biochim Biophys Acta 2009 ; 1792 : 903–914. [CrossRef] [PubMed] [Google Scholar]
  32. Kornak U, Reynders E, Dimopoulou A, et al. Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat Genet 2008 ; 40 : 32–34. [Google Scholar]
  33. Maeda Y., Taniguchi N, Endo T, Hart GW, et al. pH control in Golgi apparatus and congenital disorders of glycosylation. Glycoscience: biology and medicine 2015 ; Tokyo Springer Japan 921–925. [CrossRef] [Google Scholar]
  34. Maeda Y, Kinoshita T. The acidic environment of the Golgi is critical for glycosylation and transport. Methods enzymology. Amsterdam : Elsevier, 2010 : 495–510. [Google Scholar]
  35. Van Damme T, Gardeitchik T, Mohamed M, et al. Mutations in ATP6V1E1 or ATP6V1A cause autosomal-recessive cutis laxa. Am J Hum Genet 2017 ; 100 : 216–227. [Google Scholar]
  36. Jansen JC, Timal S, van Scherpenzeel M, et al. TMEM199 deficiency is a disorder of Golgi homeostasis characterized by elevated aminotransferases, alkaline phosphatase, and cholesterol and abnormal glycosylation. Am J Hum Genet 2016 ; 98 : 322–330. [Google Scholar]
  37. Jansen JC, Cirak S, van Scherpenzeel M, et al. CCDC115 deficiency causes a disorder of Golgi homeostasis with abnormal protein glycosylation. Am J Hum Genet 2016 ; 98 : 310–321. [Google Scholar]
  38. O’Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep 2015 ; 2 : 315–328. [CrossRef] [PubMed] [Google Scholar]
  39. Amyere M, Jaeken J, Zeevaert R, et al. TMEM165 deficiency causes a congenital disorder of glycosylation. Am J Hum Genet 2012 ; 91 : 15–26. [Google Scholar]
  40. Zeevaert R, de Zegher F, Sturiale L, et al. Zschocke J, Gibson KM, Brown G, et al. Bone dysplasia as a key feature in three patients with a novel congenital disorder of glycosylation (CDG) type II due to a deep intronic splice mutation in TMEM165. JIMD reports - Case and research reports, 2012/5 2012 ; Springer, Berlin Heidelberg Berlin, Heidelberg 145–152. [CrossRef] [Google Scholar]
  41. Potelle S, Morelle W, Dulary E, et al. Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in Golgi manganese homeostasis. Hum Mol Genet 2016 ; 25 : 1489–1500. [CrossRef] [PubMed] [Google Scholar]
  42. Dulary E, Potelle S, Legrand D, et al. TMEM165 deficiencies in congenital disorders of glycosylation type II (CDG-II): clues and evidences for roles of the protein in Golgi functions and ion homeostasis. Tissue Cell 2017 ; 49 : 150–156. [CrossRef] [PubMed] [Google Scholar]
  43. Dulary E, Yu SY, Houdou M, et al. Investigating the function of Gdt1p in yeast Golgi glycosylation. Biochim Biophys Acta 2017 ; 1862 : 394–402. [CrossRef] [PubMed] [Google Scholar]
  44. Thines L, Deschamps A, Sengottaiyan P, et al. The yeast protein Gdt1p transports Mn2+ ions and thereby regulates manganese homeostasis in the Golgi. J Biol Chem 2018 ; 293 : 8048–8055. [CrossRef] [PubMed] [Google Scholar]
  45. Morelle W, Potelle S, Witters P, et al. Galactose supplementation in patients with TMEM165-CDG rescues the glycosylation defects. J Clin Endocrinol Metab 2017 ; 102 : 1375–1386. [CrossRef] [PubMed] [Google Scholar]
  46. Potelle S, Dulary E, Climer L, et al. Manganese-induced turnover of TMEM165. Biochem J 2017 ; 474 : 1481–1493. [CrossRef] [PubMed] [Google Scholar]
  47. Houdou M, Lebredonchel E, Garat A, et al. Involvement of thapsigargin- and cyclopiazonic acid-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+ . FASEB J 2019 ; 33 : 2669–2679. [CrossRef] [PubMed] [Google Scholar]
  48. Park JH, Hogrebe M, Grüneberg M, et al. SLC39A8 deficiency: a disorder of manganese transport and glycosylation. Am J Hum Genet 2015 ; 97 : 894–903. [Google Scholar]
  49. Verheijen J, Tahata S, Kozicz T, et al. Therapeutic approaches in congenital disorders of glycosylation (CDG) involving N-linked glycosylation: an update. Genet Med 2019 ; 22 : 268–279. [CrossRef] [PubMed] [Google Scholar]
  50. Péanne R, de Lonlay P, Foulquier F, et al. Congenital disorders of glycosylation (CDG): quo vadis?. Eur J Med Genet 2017 ; 61 : 643–663. [Google Scholar]
  51. Sosicka P, Ng BG, Freeze HH. Therapeutic monosaccharides: looking back, moving forward. Biochemistry 2019; acs.biochem.9b00565. [Google Scholar]
  52. Jaeken J, Péanne R. What is new in CDG?. J Inherit Metab Dis 2017 ; 40 : 569–586. [CrossRef] [PubMed] [Google Scholar]
  53. Brasil S, Pascoal C, Francisco R, et al. CDG therapies: from bench to bedside. Int J Mol Sci 2018 ; 19 : 1304. [Google Scholar]
  54. Park JH, Hogrebe M, Fobker M, et al. SLC39A8 deficiency: biochemical correction and major clinical improvement by manganese therapy. Genet Med 2018 ; 20 : 259–268. [CrossRef] [PubMed] [Google Scholar]
  55. Yuste-Checa P, Brasil S, Gámez A, et al. Pharmacological chaperoning: a potential treatment for PMM2-CDG: human mutation. Hum Mutat 2017 ; 38 : 160–168. [CrossRef] [PubMed] [Google Scholar]
  56. Martínez-Monseny AF, Bolasell M, Callejón Póo L, et al. AZATAX: acetazolamide safety and efficacy in cerebellar syndrome in PMM2 congenital disorder of glycosylation (PMM2 CDG). Ann Neurol 2019 ; 85 : 740–751. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.