Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 8-9, Août–Septembre 2020
|
|
---|---|---|
Page(s) | 735 - 746 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020128 | |
Publié en ligne | 21 août 2020 |
- Ramakrishnan B, Ramasamy V, Qasba PK. Structural snapshots of β-1,4-galactosyltransferase-I along the kinetic pathway. J Mol Biol 2006 ; 357 : 1619–1633. [Google Scholar]
- Hadley B, Litfin T, Day CJ, et al. Nucleotide sugar transporter SLC35 family structure and function. Comput Struct Biotechnol J 2019 ; 17 : 1123–1134. [CrossRef] [PubMed] [Google Scholar]
- Brockhausen I, Schutzbach J, Kuhns W. Glycoproteins and their relationship to human disease. Cells Tissues Organs 1998 ; 161 : 36–78. [Google Scholar]
- Schachter H, Freeze HH. Glycosylation diseases: Quo vadis?. Biochim Biophys Acta 2009 ; 1792 : 925–930. [CrossRef] [PubMed] [Google Scholar]
- Jaeken J, Vanderschueren-Lodeweyckx M, Casaer P. Familial psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TGB-deficiency, increased serum arylsulphatase A and increased CSF protein: a new syndrome?. Pediatr Res 1980 ; 14 : 179. [Google Scholar]
- Jaeken J, van Eijk HG, van der Heul C, et al. Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta 1984 ; 144 : 245–247. [Google Scholar]
- Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett 1995 ; 377 : 318–320. [CrossRef] [PubMed] [Google Scholar]
- Matthijs G, Schollen E, Pardon E, et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome). Nat Genet 1997 ; 16 : 88–92. [Google Scholar]
- Dupré T, Lavieu G, Moore S, et al. Les anomalies congénitales de glycosylation des N-glycosylprotéines. Med/Sci (Paris) 2004 ; 20 : 331–338. [CrossRef] [Google Scholar]
- Ng BG, Freeze HH. Perspectives on glycosylation and its congenital disorders. Trends Genet 2018 ; 34 : 466–476. [CrossRef] [PubMed] [Google Scholar]
- Francisco R, Marques-da-Silva D, Brasil S, et al. The challenge of CDG diagnosis. Mol Genet Metab 2019 ; 126 : 1–5. [Google Scholar]
- Wopereis S.. Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin Chem 2003 ; 49 : 1839–1845. [CrossRef] [PubMed] [Google Scholar]
- Jaeken J, Hennet T, Freeze HH, et al. On the nomenclature of congenital disorders of glycosylation (CDG). J Inherit Metab Dis. 2008 ; 31 : 669–672. [CrossRef] [PubMed] [Google Scholar]
- Jaeken J, Hennet T, Matthijs G, et al. CDG nomenclature: time for a change!. Biochim Biophys Acta 2009 ; 1792 : 825–826. [CrossRef] [PubMed] [Google Scholar]
- Jaeken J.. Congenital disorders of glycosylation (CDG): it’s (nearly) all in it!. J Inherit Metab Dis 2011 ; 34 : 853–858. [CrossRef] [PubMed] [Google Scholar]
- Potelle S, Klein A, Foulquier F. Golgi post-translational modifications and associated diseases. J Inherit Metab Dis 2015 ; 38 : 741–751. [CrossRef] [PubMed] [Google Scholar]
- Willett R, Ungar D, Lupashin V. The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem Cell Biol 2013 ; 140 : 271–283. [CrossRef] [PubMed] [Google Scholar]
- Wu X, Steet RA, Bohorov O, et al. Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 2004 ; 10 : 518–523. [CrossRef] [PubMed] [Google Scholar]
- Foulquier F, Vasile E, Schollen E, et al. Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci USA 2006 ; 03 : 3764–3769. [CrossRef] [Google Scholar]
- Foulquier F, Ungar D, Reynders E, et al. A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum Mol Genet 2007 ; 16 : 717–730. [CrossRef] [PubMed] [Google Scholar]
- Kranz C, Ng BG, Sun L, et al. COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum Mol Genet 2007 ; 16 : 731–741. [CrossRef] [PubMed] [Google Scholar]
- Reynders E, Foulquier F, Leão Teles E, et al. Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Hum Mol Genet 2009 ; 18 : 3244–3256. [CrossRef] [PubMed] [Google Scholar]
- Paesold-Burda P, Maag C, Troxler H, et al. Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum Mol Genet 2009 ; 18 : 4350–4356. [CrossRef] [PubMed] [Google Scholar]
- Lubbehusen J, Thiel C, Rind N, et al. Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum Mol Genet 2010 ; 19 : 3623–3633. [CrossRef] [PubMed] [Google Scholar]
- Kodera H, Ando N, Yuasa I, et al. Mutations in COG2 encoding a subunit of the conserved oligomeric golgi complex cause a congenital disorder of glycosylation: COG2 mutations cause congenital disorder of glycosylation. Clin Genet 2015 ; 87 : 455–460. [CrossRef] [PubMed] [Google Scholar]
- Pokrovskaya ID, Willett R, Smith RD, et al. Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 2011 ; 21 : 1554–1569. [CrossRef] [PubMed] [Google Scholar]
- Shestakova A, Zolov S, Lupashin V. COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation: COG complex and Golgi glycosylation. Traffic 2006 ; 7 : 191–204. [CrossRef] [PubMed] [Google Scholar]
- Kellokumpu S.. Golgi pH, ion and redox homeostasis: how much do they really matter?. Front Cell Dev Biol 2019 ; 7 : 93. [CrossRef] [PubMed] [Google Scholar]
- Rivinoja A, Hassinen A, Kokkonen N, et al. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol 2009 ; 220 : 144–154. [Google Scholar]
- Rivinoja A, Pujol FM, Hassinen A, et al. Golgi pH, its regulation and roles in human disease. Ann Med 2012 ; 44 : 542–554. [Google Scholar]
- Guillard M, Dimopoulou A, Fischer B, et al. Vacuolar H+-ATPase meets glycosylation in patients with cutis laxa. Biochim Biophys Acta 2009 ; 1792 : 903–914. [CrossRef] [PubMed] [Google Scholar]
- Kornak U, Reynders E, Dimopoulou A, et al. Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat Genet 2008 ; 40 : 32–34. [Google Scholar]
- Maeda Y., Taniguchi N, Endo T, Hart GW, et al. pH control in Golgi apparatus and congenital disorders of glycosylation. Glycoscience: biology and medicine 2015 ; Tokyo Springer Japan 921–925. [CrossRef] [Google Scholar]
- Maeda Y, Kinoshita T. The acidic environment of the Golgi is critical for glycosylation and transport. Methods enzymology. Amsterdam : Elsevier, 2010 : 495–510. [Google Scholar]
- Van Damme T, Gardeitchik T, Mohamed M, et al. Mutations in ATP6V1E1 or ATP6V1A cause autosomal-recessive cutis laxa. Am J Hum Genet 2017 ; 100 : 216–227. [Google Scholar]
- Jansen JC, Timal S, van Scherpenzeel M, et al. TMEM199 deficiency is a disorder of Golgi homeostasis characterized by elevated aminotransferases, alkaline phosphatase, and cholesterol and abnormal glycosylation. Am J Hum Genet 2016 ; 98 : 322–330. [Google Scholar]
- Jansen JC, Cirak S, van Scherpenzeel M, et al. CCDC115 deficiency causes a disorder of Golgi homeostasis with abnormal protein glycosylation. Am J Hum Genet 2016 ; 98 : 310–321. [Google Scholar]
- O’Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Curr Environ Health Rep 2015 ; 2 : 315–328. [CrossRef] [PubMed] [Google Scholar]
- Amyere M, Jaeken J, Zeevaert R, et al. TMEM165 deficiency causes a congenital disorder of glycosylation. Am J Hum Genet 2012 ; 91 : 15–26. [Google Scholar]
- Zeevaert R, de Zegher F, Sturiale L, et al. Zschocke J, Gibson KM, Brown G, et al. Bone dysplasia as a key feature in three patients with a novel congenital disorder of glycosylation (CDG) type II due to a deep intronic splice mutation in TMEM165. JIMD reports - Case and research reports, 2012/5 2012 ; Springer, Berlin Heidelberg Berlin, Heidelberg 145–152. [CrossRef] [Google Scholar]
- Potelle S, Morelle W, Dulary E, et al. Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in Golgi manganese homeostasis. Hum Mol Genet 2016 ; 25 : 1489–1500. [CrossRef] [PubMed] [Google Scholar]
- Dulary E, Potelle S, Legrand D, et al. TMEM165 deficiencies in congenital disorders of glycosylation type II (CDG-II): clues and evidences for roles of the protein in Golgi functions and ion homeostasis. Tissue Cell 2017 ; 49 : 150–156. [CrossRef] [PubMed] [Google Scholar]
- Dulary E, Yu SY, Houdou M, et al. Investigating the function of Gdt1p in yeast Golgi glycosylation. Biochim Biophys Acta 2017 ; 1862 : 394–402. [CrossRef] [PubMed] [Google Scholar]
- Thines L, Deschamps A, Sengottaiyan P, et al. The yeast protein Gdt1p transports Mn2+ ions and thereby regulates manganese homeostasis in the Golgi. J Biol Chem 2018 ; 293 : 8048–8055. [CrossRef] [PubMed] [Google Scholar]
- Morelle W, Potelle S, Witters P, et al. Galactose supplementation in patients with TMEM165-CDG rescues the glycosylation defects. J Clin Endocrinol Metab 2017 ; 102 : 1375–1386. [CrossRef] [PubMed] [Google Scholar]
- Potelle S, Dulary E, Climer L, et al. Manganese-induced turnover of TMEM165. Biochem J 2017 ; 474 : 1481–1493. [CrossRef] [PubMed] [Google Scholar]
- Houdou M, Lebredonchel E, Garat A, et al. Involvement of thapsigargin- and cyclopiazonic acid-sensitive pumps in the rescue of TMEM165-associated glycosylation defects by Mn2+ . FASEB J 2019 ; 33 : 2669–2679. [CrossRef] [PubMed] [Google Scholar]
- Park JH, Hogrebe M, Grüneberg M, et al. SLC39A8 deficiency: a disorder of manganese transport and glycosylation. Am J Hum Genet 2015 ; 97 : 894–903. [Google Scholar]
- Verheijen J, Tahata S, Kozicz T, et al. Therapeutic approaches in congenital disorders of glycosylation (CDG) involving N-linked glycosylation: an update. Genet Med 2019 ; 22 : 268–279. [CrossRef] [PubMed] [Google Scholar]
- Péanne R, de Lonlay P, Foulquier F, et al. Congenital disorders of glycosylation (CDG): quo vadis?. Eur J Med Genet 2017 ; 61 : 643–663. [Google Scholar]
- Sosicka P, Ng BG, Freeze HH. Therapeutic monosaccharides: looking back, moving forward. Biochemistry 2019; acs.biochem.9b00565. [Google Scholar]
- Jaeken J, Péanne R. What is new in CDG?. J Inherit Metab Dis 2017 ; 40 : 569–586. [CrossRef] [PubMed] [Google Scholar]
- Brasil S, Pascoal C, Francisco R, et al. CDG therapies: from bench to bedside. Int J Mol Sci 2018 ; 19 : 1304. [Google Scholar]
- Park JH, Hogrebe M, Fobker M, et al. SLC39A8 deficiency: biochemical correction and major clinical improvement by manganese therapy. Genet Med 2018 ; 20 : 259–268. [CrossRef] [PubMed] [Google Scholar]
- Yuste-Checa P, Brasil S, Gámez A, et al. Pharmacological chaperoning: a potential treatment for PMM2-CDG: human mutation. Hum Mutat 2017 ; 38 : 160–168. [CrossRef] [PubMed] [Google Scholar]
- Martínez-Monseny AF, Bolasell M, Callejón Póo L, et al. AZATAX: acetazolamide safety and efficacy in cerebellar syndrome in PMM2 congenital disorder of glycosylation (PMM2 CDG). Ann Neurol 2019 ; 85 : 740–751. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.