Open Access
Med Sci (Paris)
Volume 36, Number 5, Mai 2020
Page(s) 497 - 503
Section M/S Revues
Published online 26 May 2020
  1. Le Franc C. diabète : des chiffres alarmants. Med Sci (Paris) 2013 ; 29 : 711–714. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. White JR. Economic considerations in treating patients with type 2 diabetes mellitus. Am J Health Syst Pharm 2002 ; 59 : suppl 9 S14–S17. [Google Scholar]
  3. Williams EP, Mesidor M, Winters K, et al. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep 2015 ; 4 : 363–370. [CrossRef] [PubMed] [Google Scholar]
  4. Kwak SH, Park KS. Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med 2016 ; 48 : e220. [Google Scholar]
  5. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev 2018 ; 98 : 2133–2123. [Google Scholar]
  6. Flamment M, Hajduch E, Ferre P, et al. New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab 2012 ; 23 : 381–390. [CrossRef] [PubMed] [Google Scholar]
  7. Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963 ; 1 : 785–789. [CrossRef] [PubMed] [Google Scholar]
  8. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002 ; 51 : 7–18. [CrossRef] [PubMed] [Google Scholar]
  9. Hu M, Phan F, Bourron O, et al. Steatosis and NASH in type 2 diabetes. Biochimie 2017 ; 143 : 37–41. [CrossRef] [PubMed] [Google Scholar]
  10. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014; 6. [PubMed] [Google Scholar]
  11. Hajduch E. Transport de glucose dans les tissus sensibles à l’insuline : implication de la protéine kinase B. Med Sci (Paris) 2001 ; 17 : 1084–1085. [Google Scholar]
  12. Hage Hassan R, Bourron O, Hajduch E. Defect of insulin signal in peripheral tissues: important role of ceramide. World J Diabetes 2014; 5 : 244–57. [CrossRef] [PubMed] [Google Scholar]
  13. Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 2014 ; 5 : 282. [PubMed] [Google Scholar]
  14. Phillips DI, Caddy S, Ilic V, et al. Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects. Metabolism 1996 ; 45 : 947–950. [CrossRef] [PubMed] [Google Scholar]
  15. Thomas EL, Fitzpatrick JA, Malik SJ, et al. Whole body fat: content and distribution. Prog Nucl Magn Reson Spectrosc 2013 ; 73 : 56–80. [CrossRef] [PubMed] [Google Scholar]
  16. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008 ; 9 : 139–150. [CrossRef] [PubMed] [Google Scholar]
  17. Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 2018 ; 19 : 175–191. [CrossRef] [PubMed] [Google Scholar]
  18. Mullen TD, Hannun YA, Obeid LM. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 2012 ; 441 : 789–802. [CrossRef] [PubMed] [Google Scholar]
  19. Turinsky J, O’Sullivan DM, Bayly BP. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem 1990 ; 265 : 16880–16885. [CrossRef] [PubMed] [Google Scholar]
  20. Turinsky J, Bayly BP, O’Sullivan DM. 1,2-Diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation, and vasopressin. J Biol Chem 1990 ; 265 : 7933–7938. [CrossRef] [PubMed] [Google Scholar]
  21. Holland WL, Summers SA. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 2008 ; 29 : 381–402. [CrossRef] [PubMed] [Google Scholar]
  22. Bandet CL, Tan-Chen S, Bourron O, et al. Sphingolipid metabolism: new insight into ceramide-induced lipotoxicity in muscle cells. Int J Mol Sci 2019 ; 20 : E479. [Google Scholar]
  23. Adams JM, Pratipanawatr T, Berria R, et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 2004 ; 53 : 25–31. [CrossRef] [PubMed] [Google Scholar]
  24. Coen PM, Dube JJ, Amati F, et al. Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content. Diabetes 2010 ; 59 : 80–88. [CrossRef] [PubMed] [Google Scholar]
  25. Moro C, Galgani JE, Luu L, et al. Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals. J Clin Endocrinol Metab 2009 ; 94 : 3440–3447. [CrossRef] [PubMed] [Google Scholar]
  26. Dube JJ, Amati F, Toledo FG, et al. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 2011 ; 54 : 1147–1156. [CrossRef] [PubMed] [Google Scholar]
  27. Blachnio-Zabielska AU, Koutsari C, Tchkonia T, et al. Sphingolipid content of human adipose tissue: relationship to adiponectin and insulin resistance. Obesity 2012 ; 20 : 2341–2347. [CrossRef] [Google Scholar]
  28. Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002 ; 277 : 50230–50236. [CrossRef] [PubMed] [Google Scholar]
  29. Itani SI, Ruderman NB, Schmieder F, et al. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes 2002 ; 51 : 2005–2011. [CrossRef] [PubMed] [Google Scholar]
  30. Vistisen B, Hellgren LI, Vadset T, et al. Effect of gender on lipid-induced insulin resistance in obese subjects. Eur J Endocrinol 2008 ; 158 : 61–68. [Google Scholar]
  31. Kotronen A, Seppanen-Laakso T, Westerbacka J, et al. Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 2009 ; 58 : 203–208. [CrossRef] [PubMed] [Google Scholar]
  32. Magkos F, Su X, Bradley D, et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 2012 ; 142 : 1444–1446. [CrossRef] [PubMed] [Google Scholar]
  33. Raichur S, Wang ST, Chan PW, et al. CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 2014 ; 20 : 687–695. [CrossRef] [PubMed] [Google Scholar]
  34. Chaurasia B, Tippetts TS, Mayoral Monibas R, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 2019 ; 365 : 386–392. [Google Scholar]
  35. Turpin SM, Nicholls HT, Willmes DM, et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 2014 ; 20 : 678–686. [CrossRef] [PubMed] [Google Scholar]
  36. Jiang M, Li C, Liu Q, et al. Inhibiting ceramide synthesis attenuates hepatic steatosis and fibrosis in rats with non-alcoholic fatty liver disease. Front Endocrinol 2019 ; 10 : 665. [CrossRef] [Google Scholar]
  37. Matsuzaka T, Kuba M, Koyasu S, et al. Hepatocyte Elovl6 determines ceramide acyl-chain length and hepatic insulin sensitivity in mice. Hepatology 2019; Sep 17. doi: 10.1002/hep.30953. [Google Scholar]
  38. Kurek K, Piotrowska DM, Wiesiolek-Kurek P, et al. Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver Int 2014 ; 34 : 1074–1083. [CrossRef] [PubMed] [Google Scholar]
  39. Raichur S, Brunner B, Bielohuby M, et al. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol Metab 2019 ; 21 : 36–50. [CrossRef] [PubMed] [Google Scholar]
  40. Bergman BC, Brozinick JT, Strauss A, et al. Muscle sphingolipids during rest and exercise: a C18:0 signature for insulin resistance in humans. Diabetologia 2016 ; 59 : 785–798. [CrossRef] [PubMed] [Google Scholar]
  41. Turpin-Nolan SM, Hammerschmidt P, Chen W, et al. CerS1-derived C18:0 ceramide in skeletal muscle promotes obesity-induced insulin resistance. Cell Rep 2019 ; 26 : 1–10. [CrossRef] [PubMed] [Google Scholar]
  42. Hajduch E, Turban S, Le L, et al. Targeting of PKCzeta and PKB to caveolin-enriched microdomains represents a crucial step underpinning the disruption in PKB-directed signalling by ceramide. Biochem J 2008 ; 410 : 369–379. [CrossRef] [PubMed] [Google Scholar]
  43. Powell D, Hajduch E, Kular G, et al. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKC zeta-dependent mechanism. Mol Cell Biol 2003 ; 23 : 7794–7808. [CrossRef] [PubMed] [Google Scholar]
  44. Blouin CM, Prado C, Takane KK, et al. Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes 2010 ; 59 : 600–610. [CrossRef] [PubMed] [Google Scholar]
  45. Hage Hassan R, Pacheco de Sousa AC, Mahfouz R, et al. Sustained action of ceramide on the insulin signaling pathway in muscle cells: implication of the double-stranded RNA-activated protein kinase. J Biol Chem 2016; 291 : 3019–29. [CrossRef] [PubMed] [Google Scholar]
  46. Cimmino I, Lorenzo V, Fiory F, et al. A peptide antagonist of Prep1-p160 interaction improves ceramide-induced insulin resistance in skeletal muscle cells. Oncotarget 2017 ; 8 : 71845–71858. [CrossRef] [PubMed] [Google Scholar]
  47. Mitsutake S, Date T, Yokota H, et al. Ceramide kinase deficiency improves diet-induced obesity and insulin resistance. FEBS Lett 2012 ; 586 : 1300–1305. [CrossRef] [PubMed] [Google Scholar]
  48. Tagami S, Inokuchi JJ, Kabayama K, et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 2002 ; 277 : 3085–3092. [CrossRef] [PubMed] [Google Scholar]
  49. Yamashita T, Hashiramoto A, Haluzik M, et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA 2003 ; 100 : 3445–3449. [CrossRef] [Google Scholar]
  50. Sekimoto J, Kabayama K, Gohara K, et al. Dissociation of the insulin receptor from caveolae during TNFalpha-induced insulin resistance and its recovery by D-PDMP. FEBS Lett 2012 ; 586 : 191–195. [CrossRef] [PubMed] [Google Scholar]
  51. Kabayama K, Sato T, Saito K, et al. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 2007 ; 104 : 13678–13683. [CrossRef] [Google Scholar]
  52. Hajduch E, Bourron O. Type 2 diabetes: ceramides as a therapeutic target?. Clin Lipidol 2013 ; 8 : 607–609. [Google Scholar]
  53. Ussher JR, Koves TR, Cadete VJ, et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 2010 ; 59 : 2453–2464. [CrossRef] [PubMed] [Google Scholar]
  54. Blachnio-Zabielska AU, Chacinska M, Vendelbo MH, et al. The crucial role of C18-Cer in fat-induced skeletal muscle insulin resistance. Cell Physiol Biochem 2016 ; 40 : 1207–1220. [CrossRef] [PubMed] [Google Scholar]
  55. Bikman BT, Guan Y, Shui G, et al. Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis. J Biol Chem 2012 ; 287 : 17426–17437. [CrossRef] [PubMed] [Google Scholar]
  56. Holland WL, Brozinick JT, Wang LP, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 2007 ; 5 : 167–179. [CrossRef] [PubMed] [Google Scholar]
  57. Morad SA, Cabot MC. Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 2013 ; 13 : 51–65. [Google Scholar]
  58. Grammatikos G, Ferreiros N, Bon D, et al. Variations in serum sphingolipid levels associate with liver fibrosis progression and poor treatment outcome in hepatitis C virus but not hepatitis B virus infection. Hepatology 2015 ; 61 : 812–822. [CrossRef] [PubMed] [Google Scholar]
  59. Kim YR, Volpert G, Shin KO, et al. Ablation of ceramide synthase 2 exacerbates dextran sodium sulphate-induced colitis in mice due to increased intestinal permeability. J Cell Mol Med 2017 ; 21 : 3565–3578. [CrossRef] [PubMed] [Google Scholar]
  60. Petrache I, Kamocki K, Poirier C, et al. Ceramide synthases expression and role of ceramide synthase-2 in the lung: insight from human lung cells and mouse models. PLoS One 2013 ; 8 : e62968. [CrossRef] [PubMed] [Google Scholar]
  61. Wigger L, Cruciani-Guglielmacci C, Nicolas A, et al. Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep 2017 ; 18 : 2269–2279. [CrossRef] [PubMed] [Google Scholar]
  62. Szpigel A, Hainault I, Carlier A, et al. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia 2018 ; 61 : 399–412. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.