Modèles alternatifs
Open Access
Med Sci (Paris)
Volume 36, Number 5, Mai 2020
Modèles alternatifs
Page(s) 504 - 514
Section M/S Revues
Published online 26 May 2020
  1. Liu L, Wang J, Rosenberg D, et al. Fermented beverage and food storage in 13,000 y-old stone mortars at Raqefet Cave, Israel: investigating natufian ritual feasting. J Archaeol Sci Rep 2018 ; 21 : 783–793. [Google Scholar]
  2. Cagniard-Latour C. Mémoire sur la fermentation vineuse. Ann Chimie Physique 1838 ; 68 : 206–222. [Google Scholar]
  3. Pasteur L. Mémoire sur la fermentation alcoolique. CR Acad Sci 1857 ; 45 : 1032–1036. [Google Scholar]
  4. Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science 1996 ; 274 : 63–67. [Google Scholar]
  5. Carmona-Gutierrez D, Bauer MA, Zimmermann A, et al. Guidelines and recommendations on yeast cell death nomenclature. Microb Cell 2018 ; 5 : 4–31. [PubMed] [Google Scholar]
  6. Kornberg R. The molecular basis of eukaryotic transcription (Nobel lecture). Angew Chem Int Ed Engl 2007 ; 46 : 6956–6965. [CrossRef] [PubMed] [Google Scholar]
  7. Nurse PM. Nobel lecture. Cyclin dependent kinases and cell cycle control. Biosci Rep 2002 ; 22 : 487–499. [CrossRef] [PubMed] [Google Scholar]
  8. Schekman R. Charting the secretory pathway in a simple eukaryote. Mol Biol Cell 2010 ; 21 : 3781–3784. [CrossRef] [PubMed] [Google Scholar]
  9. Ohsumi Y. Historical landmarks of autophagy research. Cell Res 2014 ; 24 : 9–23. [CrossRef] [PubMed] [Google Scholar]
  10. Kachroo AH, Laurent JM, Yellman CM, et al. Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 2015 ; 348 : 921–925. [Google Scholar]
  11. Bassett DE, Jr Boguski MS, Hieter P. Yeast genes and human disease. Nature 1996 ; 379 : 589–590. [Google Scholar]
  12. Kruger WD, Cox DR. A yeast assay for functional detection of mutations in the human cystathionine beta-synthase gene. Hum Mol Genet 1995 ; 4 : 1155–1161. [CrossRef] [PubMed] [Google Scholar]
  13. Ishioka C, Frebourg T, Yan YX, et al. Screening patients for heterozygous p53 mutations using a functional assay in yeast. Nat Genet 1993 ; 5 : 124–129. [Google Scholar]
  14. Billant O, Leon A, Le Guellec S, et al. The dominant-negative interplay between p53, p63 and p73: a family affair. Oncotarget 2016 ; 7 : 69549–69564. [CrossRef] [PubMed] [Google Scholar]
  15. Cox BS, Tuite MF, McLaughlin CS. The psi factor of yeast: a problem in inheritance. Yeast 1988 ; 4 : 159–178. [CrossRef] [PubMed] [Google Scholar]
  16. Lacroute F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol 1971 ; 106 : 519–522. [CrossRef] [PubMed] [Google Scholar]
  17. Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 1994 ; 264 : 566–569. [Google Scholar]
  18. Wickner RB, Shewmaker FP, Bateman DA, et al. Yeast prions: structure, biology, and prion-handling systems. Microbiol Mol Biol Rev 2015 ; 79 : 1–17. [CrossRef] [PubMed] [Google Scholar]
  19. King CY, Diaz-Avalos R. Protein-only transmission of three yeast prion strains. Nature 2004 ; 428 : 319–323. [Google Scholar]
  20. Tanaka M, Chien P, Naber N, et al. Conformational variations in an infectious protein determine prion strain differences. Nature 2004 ; 428 : 323–328. [Google Scholar]
  21. Longo VD, Shadel GS, Kaeberlein M, Kennedy B. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 2012 ; 16 : 18–31. [CrossRef] [PubMed] [Google Scholar]
  22. Guiffant D, Tribouillard D, Gug F, et al. Identification of intracellular targets of small molecular weight chemical compounds using affinity chromatography. Biotechnol J 2007 ; 2 : 68–75. [Google Scholar]
  23. Tribouillard-Tanvier D, Dos Reis S, Gug F, et al. Protein folding activity of ribosomal RNA is a selective target of two unrelated antiprion drugs. PLoS One 2008 ; 3 : e2174. [CrossRef] [PubMed] [Google Scholar]
  24. Hoon S., St Onge RP, Giaever G, Nislow C. Yeast chemical genomics and drug discovery: an update. Trends Pharmacol Sci 2008 ; 29 : 499–504. [Google Scholar]
  25. Bach S, Talarek N, Andrieu T, et al. Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nat Biotechnol 2003 ; 21 : 1075–1081. [CrossRef] [PubMed] [Google Scholar]
  26. Bach S, Tribouillard D, Talarek N, et al. A yeast-based assay to isolate drugs active against mammalian prions. Methods 2006 ; 39 : 72–77. [CrossRef] [PubMed] [Google Scholar]
  27. Oumata N, Nguyen PH, Beringue V, et al. The toll-like receptor agonist imiquimod is active against prions. PLoS One 2013 ; 8 : e72112. [CrossRef] [PubMed] [Google Scholar]
  28. Tribouillard-Tanvier D, Beringue V, Desban N, et al. Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One 2008 ; 3 : e1981. [CrossRef] [PubMed] [Google Scholar]
  29. Blondel M, Soubigou F, Evrard J, et al. Protein folding activity of the ribosome is involved in yeast prion propagation. Sci Rep 2016 ; 6 : 32117. [CrossRef] [PubMed] [Google Scholar]
  30. Cooper AA, Gitler AD, Cashikar A, et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 2006 ; 313 : 324–328. [Google Scholar]
  31. Giorgini F, Guidetti P, Nguyen Q, et al. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 2005 ; 37 : 526–531. [Google Scholar]
  32. Marechal D, Brault V, Leon A, et al. Cbs overdosage is necessary and sufficient to induce cognitive phenotypes in mouse models of Down syndrome and interacts genetically with Dyrk1a. Hum Mol Genet 2019 ; 28 : 1561–1577. [CrossRef] [PubMed] [Google Scholar]
  33. Couplan E, Aiyar RS, Kucharczyk R, et al. A yeast-based assay identifies drugs active against human mitochondrial disorders. Proc Natl Acad Sci USA 2011 ; 108 : 11989–11994. [CrossRef] [Google Scholar]
  34. Delerue T, Tribouillard-Tanvier D, Daloyau M, et al. A yeast-based screening assay identifies repurposed drugs that suppress mitochondrial fusion and mtDNA maintenance defects. Dis Model Mech 2019; 12. pii: dmm036558. doi: 10.1242/dmm.036558. [Google Scholar]
  35. Lasserre JP, Dautant A, Aiyar RS, et al. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. Dis Model Mech 2015 ; 8 : 509–526. [Google Scholar]
  36. Bonnefoy N, Fox TD. Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods Cell Biol 2001 ; 65 : 381–396. [Google Scholar]
  37. Aiyar RS, Bohnert M, Duvezin-Caubet S, et al. Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders. Nat Commun 2014 ; 5 : 5585. [PubMed] [Google Scholar]
  38. Zhao RY. Yeast for virus research. Microb. Cell 2017 ; 4 : 311–330. [Google Scholar]
  39. Lista MJ, Voisset C, Contesse MA, et al. The long-lasting love affair between the budding yeast Saccharomyces cerevisiae and the Epstein-Barr virus. Biotechnol J 2015 ; 10 : 1670–1681. [Google Scholar]
  40. Lista MJ, Martins RP, Angrand G, et al. A yeast model for the mechanism of the Epstein-Barr virus immune evasion identifies a new therapeutic target to interfere with the virus stealthiness. Microb Cell 2017 ; 4 : 305–307. [PubMed] [Google Scholar]
  41. Voisset C, Daskalogianni C, Contesse MA, et al. A yeast-based assay identifies drugs that interfere with immune evasion of the Epstein-Barr virus. Dis Model Mech 2014 ; 7 : 435–444. [Google Scholar]
  42. Lista MJ, Martins RP, Billant O, et al. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat Commun 2017 ; 8 : 16043. [PubMed] [Google Scholar]
  43. Reznichenko O, Quillevere A, Martins RP, et al. Novel cationic bis(acylhydrazones) as modulators of Epstein-Barr virus immune evasion acting through disruption of interaction between nucleolin and G-quadruplexes of EBNA1 mRNA. Eur J Med Chem 2019 ; 178 : 13–29. [PubMed] [Google Scholar]
  44. Norcliffe JL, Mina JG, Alvarez E, et al. Identifying inhibitors of the Leishmania inositol phosphorylceramide synthase with antiprotozoal activity using a yeast-based assay and ultra-high throughput screening platform. Sci Rep 2018 ; 8 : 3938. [CrossRef] [PubMed] [Google Scholar]
  45. Mayi T, Facca C, Anne S, et al. Yeast as a model system to screen purine derivatives against human CDK1 and CDK2 kinases. J Biotechnol 2015 ; 195 : 30–36. [CrossRef] [PubMed] [Google Scholar]
  46. Szczebara FM, Chandelier C, Villeret C, et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 2003 ; 21 : 143–149. [CrossRef] [PubMed] [Google Scholar]
  47. Angrand G, Quillevere A, Loaec N, et al. Sneaking out for happy hour: yeast-based approaches to explore and modulate immune response and immune evasion. Genes (Basel) 2019; 10. pii: E667. doi: 10.3390/genes10090667. [Google Scholar]
  48. Sewalt V, Shanahan S, Gregg L, et al. The generally recognized as safe (GRAS) process for industrial microbial enzymes. Industrial Biotechnology 2016 ; 12 : 295–302. [CrossRef] [Google Scholar]
  49. Bonander N, Darby RA, Grgic L, et al. Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield. Microb Cell Fact 2009 ; 8 : 10. 10.1186/1475-2859-8-10 [CrossRef] [PubMed] [Google Scholar]
  50. Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature 1989 ; 340 : 245–246. [Google Scholar]
  51. Vidal M, Fields S. The yeast two-hybrid assay: still finding connections after 25 years. Nat Methods 2014 ; 11 : 1203–1206. [PubMed] [Google Scholar]
  52. Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci 2012 ; 33 : 109–118. [Google Scholar]
  53. Baines IC, Colas P. Peptide aptamers as guides for small-molecule drug discovery. Drug Discov Today 2006 ; 11 : 334–341. [CrossRef] [PubMed] [Google Scholar]
  54. Sahni N, Yi S, Taipale M, et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell 2015 ; 161 : 647–660. [CrossRef] [PubMed] [Google Scholar]
  55. Bacart J, Corbel C, Jockers R, et al. The BRET technology and its application to screening assays. Biotechnol J 2008 ; 3 : 311–324. [Google Scholar]
  56. Gehret AU, Bajaj A, Naider F, Dumont ME. Oligomerization of the yeast alpha-factor receptor: implications for dominant negative effects of mutant receptors. J Biol Chem 2006 ; 281 : 20698–20714. [CrossRef] [PubMed] [Google Scholar]
  57. Corbel C, Sartini S, Levati E, et al. Screening for protein-protein interaction inhibitors using a bioluminescence resonance energy transfer (BRET)-based assay in yeast. SLAS Discov 2017 ; 22 : 751–759. [PubMed] [Google Scholar]
  58. Corbel C, Wang Q, Bousserouel H, et al. First BRET-based screening assay performed in budding yeast leads to the discovery of CDK5/p25 interaction inhibitors. Biotechnol J 2011 ; 6 : 860–870. [Google Scholar]
  59. Corbel C, Zhang B, Le Parc A, et al. Tamoxifen inhibits CDK5 kinase activity by interacting with p35/p25 and modulates the pattern of tau phosphorylation. Chem Biol 2015 ; 22 : 472–482. [CrossRef] [PubMed] [Google Scholar]
  60. Sartini S, Levati E, Maccesi M, et al. New antimicrobials targeting bacterial RNA polymerase holoenzyme assembly identified with an in vivo BRET-based discovery platform. ACS Chem Biol 2019 ; 14 : 1727–1736. [CrossRef] [PubMed] [Google Scholar]
  61. Voisset C, Blondel M. Chémobiologie à l’happy hour : la levure comme modèle de criblage pharmacologique. Med Sci (Paris) 2014 ; 30 : 1161–1168. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.