Open Access
Numéro
Med Sci (Paris)
Volume 36, Numéro 5, Mai 2020
Page(s) 497 - 503
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020091
Publié en ligne 26 mai 2020
  1. Le Franc C. diabète : des chiffres alarmants. Med Sci (Paris) 2013 ; 29 : 711–714. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. White JR. Economic considerations in treating patients with type 2 diabetes mellitus. Am J Health Syst Pharm 2002 ; 59 : suppl 9 S14–S17. [Google Scholar]
  3. Williams EP, Mesidor M, Winters K, et al. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep 2015 ; 4 : 363–370. [CrossRef] [PubMed] [Google Scholar]
  4. Kwak SH, Park KS. Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med 2016 ; 48 : e220. [Google Scholar]
  5. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev 2018 ; 98 : 2133–2123. [Google Scholar]
  6. Flamment M, Hajduch E, Ferre P, et al. New insights into ER stress-induced insulin resistance. Trends Endocrinol Metab 2012 ; 23 : 381–390. [CrossRef] [PubMed] [Google Scholar]
  7. Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963 ; 1 : 785–789. [CrossRef] [PubMed] [Google Scholar]
  8. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002 ; 51 : 7–18. [CrossRef] [PubMed] [Google Scholar]
  9. Hu M, Phan F, Bourron O, et al. Steatosis and NASH in type 2 diabetes. Biochimie 2017 ; 143 : 37–41. [CrossRef] [PubMed] [Google Scholar]
  10. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014; 6. [PubMed] [Google Scholar]
  11. Hajduch E. Transport de glucose dans les tissus sensibles à l’insuline : implication de la protéine kinase B. Med Sci (Paris) 2001 ; 17 : 1084–1085. [Google Scholar]
  12. Hage Hassan R, Bourron O, Hajduch E. Defect of insulin signal in peripheral tissues: important role of ceramide. World J Diabetes 2014; 5 : 244–57. [CrossRef] [PubMed] [Google Scholar]
  13. Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 2014 ; 5 : 282. [PubMed] [Google Scholar]
  14. Phillips DI, Caddy S, Ilic V, et al. Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects. Metabolism 1996 ; 45 : 947–950. [CrossRef] [PubMed] [Google Scholar]
  15. Thomas EL, Fitzpatrick JA, Malik SJ, et al. Whole body fat: content and distribution. Prog Nucl Magn Reson Spectrosc 2013 ; 73 : 56–80. [CrossRef] [PubMed] [Google Scholar]
  16. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008 ; 9 : 139–150. [CrossRef] [PubMed] [Google Scholar]
  17. Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 2018 ; 19 : 175–191. [CrossRef] [PubMed] [Google Scholar]
  18. Mullen TD, Hannun YA, Obeid LM. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 2012 ; 441 : 789–802. [CrossRef] [PubMed] [Google Scholar]
  19. Turinsky J, O’Sullivan DM, Bayly BP. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem 1990 ; 265 : 16880–16885. [CrossRef] [PubMed] [Google Scholar]
  20. Turinsky J, Bayly BP, O’Sullivan DM. 1,2-Diacylglycerol and ceramide levels in rat skeletal muscle and liver in vivo. Studies with insulin, exercise, muscle denervation, and vasopressin. J Biol Chem 1990 ; 265 : 7933–7938. [CrossRef] [PubMed] [Google Scholar]
  21. Holland WL, Summers SA. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 2008 ; 29 : 381–402. [CrossRef] [PubMed] [Google Scholar]
  22. Bandet CL, Tan-Chen S, Bourron O, et al. Sphingolipid metabolism: new insight into ceramide-induced lipotoxicity in muscle cells. Int J Mol Sci 2019 ; 20 : E479. [Google Scholar]
  23. Adams JM, Pratipanawatr T, Berria R, et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 2004 ; 53 : 25–31. [CrossRef] [PubMed] [Google Scholar]
  24. Coen PM, Dube JJ, Amati F, et al. Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content. Diabetes 2010 ; 59 : 80–88. [CrossRef] [PubMed] [Google Scholar]
  25. Moro C, Galgani JE, Luu L, et al. Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary individuals. J Clin Endocrinol Metab 2009 ; 94 : 3440–3447. [CrossRef] [PubMed] [Google Scholar]
  26. Dube JJ, Amati F, Toledo FG, et al. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 2011 ; 54 : 1147–1156. [CrossRef] [PubMed] [Google Scholar]
  27. Blachnio-Zabielska AU, Koutsari C, Tchkonia T, et al. Sphingolipid content of human adipose tissue: relationship to adiponectin and insulin resistance. Obesity 2012 ; 20 : 2341–2347. [CrossRef] [Google Scholar]
  28. Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002 ; 277 : 50230–50236. [CrossRef] [PubMed] [Google Scholar]
  29. Itani SI, Ruderman NB, Schmieder F, et al. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes 2002 ; 51 : 2005–2011. [CrossRef] [PubMed] [Google Scholar]
  30. Vistisen B, Hellgren LI, Vadset T, et al. Effect of gender on lipid-induced insulin resistance in obese subjects. Eur J Endocrinol 2008 ; 158 : 61–68. [Google Scholar]
  31. Kotronen A, Seppanen-Laakso T, Westerbacka J, et al. Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 2009 ; 58 : 203–208. [CrossRef] [PubMed] [Google Scholar]
  32. Magkos F, Su X, Bradley D, et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 2012 ; 142 : 1444–1446. [CrossRef] [PubMed] [Google Scholar]
  33. Raichur S, Wang ST, Chan PW, et al. CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 2014 ; 20 : 687–695. [CrossRef] [PubMed] [Google Scholar]
  34. Chaurasia B, Tippetts TS, Mayoral Monibas R, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 2019 ; 365 : 386–392. [Google Scholar]
  35. Turpin SM, Nicholls HT, Willmes DM, et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 2014 ; 20 : 678–686. [CrossRef] [PubMed] [Google Scholar]
  36. Jiang M, Li C, Liu Q, et al. Inhibiting ceramide synthesis attenuates hepatic steatosis and fibrosis in rats with non-alcoholic fatty liver disease. Front Endocrinol 2019 ; 10 : 665. [CrossRef] [Google Scholar]
  37. Matsuzaka T, Kuba M, Koyasu S, et al. Hepatocyte Elovl6 determines ceramide acyl-chain length and hepatic insulin sensitivity in mice. Hepatology 2019; Sep 17. doi: 10.1002/hep.30953. [Google Scholar]
  38. Kurek K, Piotrowska DM, Wiesiolek-Kurek P, et al. Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver Int 2014 ; 34 : 1074–1083. [CrossRef] [PubMed] [Google Scholar]
  39. Raichur S, Brunner B, Bielohuby M, et al. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol Metab 2019 ; 21 : 36–50. [CrossRef] [PubMed] [Google Scholar]
  40. Bergman BC, Brozinick JT, Strauss A, et al. Muscle sphingolipids during rest and exercise: a C18:0 signature for insulin resistance in humans. Diabetologia 2016 ; 59 : 785–798. [CrossRef] [PubMed] [Google Scholar]
  41. Turpin-Nolan SM, Hammerschmidt P, Chen W, et al. CerS1-derived C18:0 ceramide in skeletal muscle promotes obesity-induced insulin resistance. Cell Rep 2019 ; 26 : 1–10. [CrossRef] [PubMed] [Google Scholar]
  42. Hajduch E, Turban S, Le L, et al. Targeting of PKCzeta and PKB to caveolin-enriched microdomains represents a crucial step underpinning the disruption in PKB-directed signalling by ceramide. Biochem J 2008 ; 410 : 369–379. [CrossRef] [PubMed] [Google Scholar]
  43. Powell D, Hajduch E, Kular G, et al. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKC zeta-dependent mechanism. Mol Cell Biol 2003 ; 23 : 7794–7808. [CrossRef] [PubMed] [Google Scholar]
  44. Blouin CM, Prado C, Takane KK, et al. Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes 2010 ; 59 : 600–610. [CrossRef] [PubMed] [Google Scholar]
  45. Hage Hassan R, Pacheco de Sousa AC, Mahfouz R, et al. Sustained action of ceramide on the insulin signaling pathway in muscle cells: implication of the double-stranded RNA-activated protein kinase. J Biol Chem 2016; 291 : 3019–29. [CrossRef] [PubMed] [Google Scholar]
  46. Cimmino I, Lorenzo V, Fiory F, et al. A peptide antagonist of Prep1-p160 interaction improves ceramide-induced insulin resistance in skeletal muscle cells. Oncotarget 2017 ; 8 : 71845–71858. [CrossRef] [PubMed] [Google Scholar]
  47. Mitsutake S, Date T, Yokota H, et al. Ceramide kinase deficiency improves diet-induced obesity and insulin resistance. FEBS Lett 2012 ; 586 : 1300–1305. [CrossRef] [PubMed] [Google Scholar]
  48. Tagami S, Inokuchi JJ, Kabayama K, et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 2002 ; 277 : 3085–3092. [CrossRef] [PubMed] [Google Scholar]
  49. Yamashita T, Hashiramoto A, Haluzik M, et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA 2003 ; 100 : 3445–3449. [CrossRef] [Google Scholar]
  50. Sekimoto J, Kabayama K, Gohara K, et al. Dissociation of the insulin receptor from caveolae during TNFalpha-induced insulin resistance and its recovery by D-PDMP. FEBS Lett 2012 ; 586 : 191–195. [CrossRef] [PubMed] [Google Scholar]
  51. Kabayama K, Sato T, Saito K, et al. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 2007 ; 104 : 13678–13683. [CrossRef] [Google Scholar]
  52. Hajduch E, Bourron O. Type 2 diabetes: ceramides as a therapeutic target?. Clin Lipidol 2013 ; 8 : 607–609. [Google Scholar]
  53. Ussher JR, Koves TR, Cadete VJ, et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 2010 ; 59 : 2453–2464. [CrossRef] [PubMed] [Google Scholar]
  54. Blachnio-Zabielska AU, Chacinska M, Vendelbo MH, et al. The crucial role of C18-Cer in fat-induced skeletal muscle insulin resistance. Cell Physiol Biochem 2016 ; 40 : 1207–1220. [CrossRef] [PubMed] [Google Scholar]
  55. Bikman BT, Guan Y, Shui G, et al. Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis. J Biol Chem 2012 ; 287 : 17426–17437. [CrossRef] [PubMed] [Google Scholar]
  56. Holland WL, Brozinick JT, Wang LP, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 2007 ; 5 : 167–179. [CrossRef] [PubMed] [Google Scholar]
  57. Morad SA, Cabot MC. Ceramide-orchestrated signalling in cancer cells. Nat Rev Cancer 2013 ; 13 : 51–65. [Google Scholar]
  58. Grammatikos G, Ferreiros N, Bon D, et al. Variations in serum sphingolipid levels associate with liver fibrosis progression and poor treatment outcome in hepatitis C virus but not hepatitis B virus infection. Hepatology 2015 ; 61 : 812–822. [CrossRef] [PubMed] [Google Scholar]
  59. Kim YR, Volpert G, Shin KO, et al. Ablation of ceramide synthase 2 exacerbates dextran sodium sulphate-induced colitis in mice due to increased intestinal permeability. J Cell Mol Med 2017 ; 21 : 3565–3578. [CrossRef] [PubMed] [Google Scholar]
  60. Petrache I, Kamocki K, Poirier C, et al. Ceramide synthases expression and role of ceramide synthase-2 in the lung: insight from human lung cells and mouse models. PLoS One 2013 ; 8 : e62968. [CrossRef] [PubMed] [Google Scholar]
  61. Wigger L, Cruciani-Guglielmacci C, Nicolas A, et al. Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep 2017 ; 18 : 2269–2279. [CrossRef] [PubMed] [Google Scholar]
  62. Szpigel A, Hainault I, Carlier A, et al. Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia 2018 ; 61 : 399–412. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.