Open Access
Med Sci (Paris)
Volume 36, Number 5, Mai 2020
Page(s) 487 - 496
Section M/S Revues
Published online 26 May 2020
  1. Kawasaki T, Kitsukawa T, Bekku Y, et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 1999 ; 126 : 4895–4902. [PubMed] [Google Scholar]
  2. Kitsukawa T, Shimono A, Kawakami A, et al. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 1995 ; 121 : 4309–4318. [PubMed] [Google Scholar]
  3. Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002 ; 129 : 4797–4806. [PubMed] [Google Scholar]
  4. Takashima S, Kitakaze M, Asakura M, et al. Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci USA 2002 ; 99 : 3657–3662. [CrossRef] [Google Scholar]
  5. Valdembri D, Caswell PT, Anderson KI, et al. Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells. PLoS Biol 2009 ; 7 : e25. [CrossRef] [PubMed] [Google Scholar]
  6. Wang L, Mukhopadhyay D, Xu X. C terminus of RGS-GAIP-interacting protein conveys neuropilin-1-mediated signaling during angiogenesis. FASEB J 2006 ; 20 : 1513–1515. [CrossRef] [PubMed] [Google Scholar]
  7. Cao Y, E G, Wang E, et al. VEGF exerts an angiogenesis-independent function in cancer cells to promote their malignant progression. Cancer Res 2012 ; 72 : 3912–3918. [Google Scholar]
  8. Roy S, Bag AK, Singh RK, et al. Multifaceted role of neuropilins in the immune system: potential targets for immunotherapy. Front Immunol 2017 ; 8 : 1228. [CrossRef] [PubMed] [Google Scholar]
  9. Harper SJ, Bates DO. VEGF-A splicing: the key to anti-angiogenic therapeutics?. Nat Rev Cancer 2008 ; 8 : 880–887. [Google Scholar]
  10. Balan M, Mier y Teran E, Waaga-Gasser AM, et al. Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression. J Biol Chem 2015 ; 290 : 8110–8120. [CrossRef] [PubMed] [Google Scholar]
  11. Cao Y, Wang L, Nandy D, et al. Neuropilin-1 upholds dedifferentiation and propagation phenotypes of renal cell carcinoma cells by activating Akt and sonic hedgehog axes. Cancer Res 2008 ; 68 : 8667–8672. [Google Scholar]
  12. Lepelletier Y, Moura IC, Hadj-Slimane R, et al. Immunosuppressive role of semaphorin-3A on T cell proliferation is mediated by inhibition of actin cytoskeleton reorganization. Eur J Immunol 2006 ; 36 : 1782–1793. [CrossRef] [PubMed] [Google Scholar]
  13. Schellenburg S, Schulz A, Poitz DM, Muders MH. Role of neuropilin-2 in the immune system. Mol Immunol 2017 ; 90 : 239–244. [Google Scholar]
  14. Curreli S, Arany Z, Gerardy-Schahn R, et al. Polysialylated neuropilin-2 is expressed on the surface of human dendritic cells and modulates dendritic cell-T lymphocyte interactions. J Biol Chem 2007 ; 282 : 30346–30356. [CrossRef] [PubMed] [Google Scholar]
  15. Casazza A, Laoui D, Wenes M, et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 2013 ; 24 : 695–709. [CrossRef] [PubMed] [Google Scholar]
  16. Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 2014 ; 11 : 98. [CrossRef] [PubMed] [Google Scholar]
  17. Stamatos NM, Zhang L, Jokilammi A, et al. Changes in polysialic acid expression on myeloid cells during differentiation and recruitment to sites of inflammation: role in phagocytosis. Glycobiology 2014 ; 24 : 864–879. [CrossRef] [PubMed] [Google Scholar]
  18. Hong TM, Chen YL, Wu YY, et al. Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer Res 2007 ; 13 : 4759–4768. [CrossRef] [PubMed] [Google Scholar]
  19. Gray MJ, Van Buren G, Dallas NA, et al. Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J Natl Cancer Inst 2008 ; 100 : 109–120. [CrossRef] [PubMed] [Google Scholar]
  20. Cao Y, Hoeppner LH, Bach S, et al. Neuropilin-2 promotes extravasation and metastasis by interacting with endothelial alpha5 integrin. Cancer Res 2013 ; 73 : 4579–4590. [Google Scholar]
  21. Weekes CD, Beeram M, Tolcher AW, et al. A phase I study of the human monoclonal anti-NRP1 antibody MNRP1685A in patients with advanced solid tumors. Invest New Drugs 2014 ; 32 : 653–660. [CrossRef] [PubMed] [Google Scholar]
  22. Liang WC, Dennis MS, Stawicki S, et al. Function blocking antibodies to neuropilin-1 generated from a designed human synthetic antibody phage library. J Mol Biol 2007 ; 366 : 815–829. [Google Scholar]
  23. Pan Q, Chanthery Y, Liang WC, et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 2007 ; 11 : 53–67. [CrossRef] [PubMed] [Google Scholar]
  24. Patnaik A, LoRusso PM, Messersmith WA, et al. A Phase Ib study evaluating MNRP1685A, a fully human anti-NRP1 monoclonal antibody, in combination with bevacizumab and paclitaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 2014 ; 73 : 951–960. [CrossRef] [PubMed] [Google Scholar]
  25. Tse BWC, Volpert M, Ratther E, et al. Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene 2017 ; 36 : 3417–3427. [Google Scholar]
  26. Parker MW, Xu P, Li X, Vander Kooi CW. Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. J Biol Chem 2012 ; 287 : 11082–11089. [CrossRef] [PubMed] [Google Scholar]
  27. Starzec A, Vassy R, Martin A, et al. Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1. Life Sci 2006 ; 79 : 2370–2381. [CrossRef] [PubMed] [Google Scholar]
  28. Tirand L, Frochot C, Vanderesse R, et al. A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. J Control Release 2006 ; 111 : 153–164. [CrossRef] [PubMed] [Google Scholar]
  29. Benachour H, Seve A, Bastogne T, et al. Multifunctional Peptide-conjugated hybrid silica nanoparticles for photodynamic therapy and MRI. Theranostics 2012 ; 2 : 889–904. [CrossRef] [PubMed] [Google Scholar]
  30. Richard M, Chateau A, Jelsch C, et al. Carbohydrate-based peptidomimetics targeting neuropilin-1: synthesis, molecular docking study and in vitro biological activities. Bioorg Med Chem 2016 ; 24 : 5315–5325. [CrossRef] [PubMed] [Google Scholar]
  31. Puszko AK, Sosnowski P, Tymecka D, et al. Neuropilin-1 peptide-like ligands with proline mimetics, tested using the improved chemiluminescence affinity detection method. Medchemcomm 2019 ; 10 : 332–340. [CrossRef] [PubMed] [Google Scholar]
  32. Jia H, Bagherzadeh A, Hartzoulakis B, et al. Characterization of a bicyclic peptide neuropilin-1 (NP-1) antagonist (EG3287) reveals importance of vascular endothelial growth factor exon 8 for NP-1 binding and role of NP-1 in KDR signaling. J Biol Chem 2006 ; 281 : 13493–13502. [CrossRef] [PubMed] [Google Scholar]
  33. Jarvis A, Allerston CK, Jia H, et al. Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. J Med Chem 2010 ; 53 : 2215–2226. [CrossRef] [PubMed] [Google Scholar]
  34. Powell J, Mota F, Steadman D, et al. Small molecule neuropilin-1 antagonists combine antiangiogenic and antitumor activity with immune modulation through reduction of transforming growth factor beta (TGFbeta) production in regulatory T-cells. J Med Chem 2018 ; 61 : 4135–4154. [CrossRef] [PubMed] [Google Scholar]
  35. Starzec A, Miteva MA, Ladam P, et al. Discovery of novel inhibitors of vascular endothelial growth factor-A-Neuropilin-1 interaction by structure-based virtual screening. Bioorg Med Chem 2014 ; 22 : 4042–4048. [CrossRef] [PubMed] [Google Scholar]
  36. Liu WQ, Megale V, Borriello L, et al. Synthesis and structure-activity relationship of non-peptidic antagonists of neuropilin-1 receptor. Bioorg Med Chem Lett 2014 ; 24 : 4254–4259. [PubMed] [Google Scholar]
  37. Liu WQ, Lepelletier Y, Montes M, et al. NRPa-308, a new neuropilin-1 antagonist, exerts in vitro anti-angiogenic and anti-proliferative effects and in vivo anti-cancer effects in a mouse xenograft model. Cancer Lett 2018 ; 414 : 88–98. [Google Scholar]
  38. Borriello L, Montes M, Lepelletier Y, et al. Structure-based discovery of a small non-peptidic Neuropilins antagonist exerting in vitro and in vivo anti-tumor activity on breast cancer model. Cancer Lett 2014 ; 349 : 120–127. [Google Scholar]
  39. Brachet E, Dumond A, Liu WQ, et al. Synthesis, 3D-structure and stability analyses of NRPa-308, a new promising anti-cancer agent. Bioorg Med Chem Lett 2019 ; 29 : 126710. [PubMed] [Google Scholar]
  40. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000 ; 100 : 57–70. [CrossRef] [PubMed] [Google Scholar]
  41. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.