Open Access
Issue |
Med Sci (Paris)
Volume 36, Number 4, Avril 2020
|
|
---|---|---|
Page(s) | 358 - 366 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020081 | |
Published online | 01 May 2020 |
- Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 2015 ; 96 : 183-95. [Google Scholar]
- Carter JC, Sheehan DW, Prochoroff A, Birnkrant DJ. Muscular dystrophies. Clin Chest Med 2018 ; 39 : 377-89. [CrossRef] [PubMed] [Google Scholar]
- Al-Zaidy S, Rodino-Klapac L, Mendell JR. Gene therapy for muscular dystrophy: moving the field forward. Pediatr Neurol : 2014 ; 51 : 607-18. [Google Scholar]
- Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013 ; 31 : 397-405. [CrossRef] [PubMed] [Google Scholar]
- Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014 ; 156 : 935-49. [CrossRef] [PubMed] [Google Scholar]
- Jiang F, Doudna JA. CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys 2017 ; 46 : 505-29. [CrossRef] [PubMed] [Google Scholar]
- Zhang XH, Tee LY, Wang XG, et al. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 2015 ; 4 : 264. [Google Scholar]
- Aryal NK, Wasylishen AR, Lozano G. CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo. Cell Death Dis 2018 ; 9 : 1099. [CrossRef] [PubMed] [Google Scholar]
- Neldeborg S, Lin L, Stougaard M, Luo Y. Rapid and efficient gene deletion by CRISPR/Cas9. Methods Mol Biol 2019 ; 1961 : 233-47. [CrossRef] [PubMed] [Google Scholar]
- Min YL, Bassel-Duby R, Olson EN. CRISPR correction of Duchenne muscular dystrophy. Annu Rev Med 2019 ; 70 : 239-55. [CrossRef] [PubMed] [Google Scholar]
- Gee P, Xu H, Hotta A. Cellular reprogramming, genome editing, and alternative CRISPR Cas9 technologies for precise gene therapy of Duchenne muscular dystrophy. Stem Cells Int 2017 ; 8765154. [PubMed] [Google Scholar]
- Chen G, Abdeen AA, Wang Y, et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat Nanotechnol 2019 ; 14 : 974-80. [CrossRef] [PubMed] [Google Scholar]
- Lee K, Conboy M, Park HM, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng 2017 ; 1 : 889-901. [CrossRef] [PubMed] [Google Scholar]
- Lau CH, Suh Y. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Res 2017 ; 6 : 2153. [CrossRef] [PubMed] [Google Scholar]
- Nakamura K, Fujii W, Tsuboi M, et al. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci Rep 2014 ; 4 : 5635. [CrossRef] [PubMed] [Google Scholar]
- Amoasii L, Long C, Li H, et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med 2017 ; 9. [Google Scholar]
- Sui T, Lau YS, Liu D, et al. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. Dis Model Mech 2018 ; 11. [Google Scholar]
- Chen Y, Zheng Y, Kang Y, et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet 2015 ; 24 : 3764-74. [CrossRef] [PubMed] [Google Scholar]
- Demonbreun AR, Wyatt EJ, Fallon KS, et al. A gene-edited mouse model of Limb-Girdle muscular dystrophy 2C for testing exon skipping. Dis Model Mech 2019 ; 13. pii: dmm040832. [Google Scholar]
- Brennan S, Garcia-Castaneda M, Michelucci A, et al. Mouse model of severe recessive RYR1-related myopathy. Hum Mol Genet 2019 ; 28 : 3024-36. [CrossRef] [PubMed] [Google Scholar]
- Amoasii L, Li H, Zhang Y, et al. In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse. Nat Commun 2019 ; 10 : 4537. [PubMed] [Google Scholar]
- Amoasii L, Hildyard JCW, Li H, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 2018 ; 362 : 86-91. [Google Scholar]
- Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016 ; 351 : 400-3. [Google Scholar]
- Ifuku M, Iwabuchi KA, Tanaka M, et al. Restoration of dystrophin protein expression by exon skipping utilizing CRISPR-Cas9 in myoblasts derived from DMD patient iPS cells. Methods Mol Biol 2018 ; 1828 : 191-217. [CrossRef] [PubMed] [Google Scholar]
- Long C, Li H, Tiburcy M, et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci Adv 2018 ; 4 : eaap9004. [CrossRef] [PubMed] [Google Scholar]
- Duchêne BL, Cherif K, Iyombe-Engembe JP, et al. CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo. Mol Ther 2018 ; 26 : 2604-16. [CrossRef] [PubMed] [Google Scholar]
- Nance ME, Shi R, Hakim CH, et al. AAV9 edits muscle stem cells in normal and dystrophic adult mice. Mol Ther 2019 ; 27 : 1568-85. [CrossRef] [PubMed] [Google Scholar]
- Tabebordbar M, Zhu K, Cheng JKW, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016 ; 351 : 407-11. [Google Scholar]
- Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016 ; 351 : 403-7. [Google Scholar]
- Dastidar S, Ardui S, Singh K, et la. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Res 2018 ; 46 : 8275-98. [CrossRef] [PubMed] [Google Scholar]
- Lo Scrudato M, Poulard K, Sourd C, et al. Genome editing of expanded CTG repeats within the human DMPK gene reduces nuclear RNA foci in muscle of DM1 mice. Mol Ther 2019 ; 27 : 1372-88. [CrossRef] [PubMed] [Google Scholar]
- Selvaraj S, Dhoke NR, Kiley J, et al. Gene correction of LGMD2A patient-specific iPSCs for the development of targeted autologous cell therapy. Mol Ther 2019 ; 27 : 2147-57. [CrossRef] [PubMed] [Google Scholar]
- Wang Y, Hao L, Wang H, et al. Therapeutic genome editing for myotonic dystrophy type 1 using CRISPR/Cas9. Mol Ther 2018 ; 26 : 2617-30. [CrossRef] [PubMed] [Google Scholar]
- Long C, McAnally JR, Shelton JM, et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 2014 ; 345 : 1184-8. [Google Scholar]
- Bengtsson NE, Hall JK, Odom GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 2017 ; 8 : 14454. [CrossRef] [PubMed] [Google Scholar]
- Matre PR, Mu X, Wu J, et al. CRISPR/Cas9-based dystrophin restoration reveals a novel role for dystrophin in bioenergetics and stress resistance of muscle Pprogenitors. Stem Cells 2019 ; 37 : 1615-28. [CrossRef] [PubMed] [Google Scholar]
- Hwang J, Yokota T. Recent advancements in exon-skipping therapies using antisense oligonucleotides and genome editing for the treatment of various muscular dystrophies. Expert Rev Mol Med 2019 ; 21 : e5. [CrossRef] [PubMed] [Google Scholar]
- Ryu SM, Koo T, Kim K, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 2018 ; 36 : 536-9. [CrossRef] [PubMed] [Google Scholar]
- Ricotti V, Spinty S, Roper H, et al. Safety, tolerability, and pharmacokinetics of SMT C1100, a 2-Arylbenzoxazole utrophin modulator, following single- and multiple-dose administration to pediatric patients with Duchenne muscular dystrophy. PLoS One 2016 ; 11 : e0152840. [CrossRef] [PubMed] [Google Scholar]
- Hanlon KS, Kleinstiver BP, Garcia SP, et al. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat Commun 2019 ; 10 : 4439. [PubMed] [Google Scholar]
- Lee J, Mou H, Ibraheim R, et al. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 2019 ; 25 : 1421-31. [CrossRef] [PubMed] [Google Scholar]
- Min YL, Bassel-Duby R, Olson EN. CRISPR correction of Duchenne muscular dystrophy. Annu Rev Med 2019 ; 70 : 239-55. [CrossRef] [PubMed] [Google Scholar]
- Cohen J. In dogs, CRISPR fixes a muscular dystrophy. Science 2018 ; 361 : 835. [Google Scholar]
- Attenello FJ. Immunity to CRISPR-Cas9. Sci Transl Med 2019 ; 1 : 5328. [Google Scholar]
- Crudele JM, Chamberlain JS. Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat Commun 2018 ; 9 : 3497. [CrossRef] [PubMed] [Google Scholar]
- Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptative immunity to Cas9 proteins in humans. Nat Med 2019 ; 25 : 249-54. [CrossRef] [PubMed] [Google Scholar]
- Neuberger EWI, Simon P. Gene and cell doping: the new frontier. Beyond myth or reality. Med Sport Sci 2017 ; 62 : 91-106. [Google Scholar]
- Schuelke M, Wagner KR, Stolz LE, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004 ; 350 : 2682-8. [Google Scholar]
- Rossi A, Salvetti A. Intégration des vecteurs AAV et mutagenèse insertionnelle. Med Sci (Paris) 2016 ; 32 : 167-74. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Meyer M. Biologie et médecine « do-it-yourself ». Histoire, pratiques, enjeux. Med Sci (Paris) 2018 ; 34 : 473-9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Smithies O, Gregg RG, Boggs SS, et al. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 1985 ; 317 : 230-4. [Google Scholar]
- Jordan B. Bébés CRISPR : anatomie d’une transgression. Med Sci (Paris) 2019 ; 35 : 266-70. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.