Free Access
Med Sci (Paris)
Volume 36, Number 4, Avril 2020
Page(s) 348 - 357
Section M/S Revues
Published online 01 May 2020
  1. Maurer E, Tang C, Schaff M et al. Targeting platelet GPIbβ reduces platelet adhesion, GPIb signaling and thrombin generation and prevents arterial thrombosis. Arterioscler Thromb Vasc Biol 2013 ; 33 : 1221–1229. [CrossRef] [PubMed] [Google Scholar]
  2. Manne BK, Badolia R, Dangelmaier C et al. Distinct pathways regulate Syk protein activation downstream of immune tyrosine activation motif (ITAM) and hemITAM receptors in platelets. J Biol Chem 2015 ; 290 : 11557–11568. [CrossRef] [PubMed] [Google Scholar]
  3. Onselaer MB, Hardy AT, Wilson C et al. Fibrin and D-dimer bind to monomeric GPVI. Blood Adv 2017 ; 1 : 1495–1504. [Google Scholar]
  4. Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care 2012 ; 1 : 60–74. [CrossRef] [PubMed] [Google Scholar]
  5. Stefanini L, Bergmeier W. RAP1-GTPase signaling and platelet function. J Mol Med 2016 ; 94 : 13–19. [CrossRef] [PubMed] [Google Scholar]
  6. Flevaris P, Li Z, Zhang G et al. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood 2009 ; 113 : 893–901. [Google Scholar]
  7. Valet C, Severin S, Chicanne G et al. The role of class I, II and III PI 3-kinases in platelet production and activation and their implication in thrombosis. Adv Biol Regul 2016 ; 61 : 33–41. [CrossRef] [PubMed] [Google Scholar]
  8. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011 ; 31 : 986–1000. [CrossRef] [PubMed] [Google Scholar]
  9. Verdoia M, Schaffer A, Barbieri L et al. Benefits from nnew ADP antagonists as compared with clopidogrel in patients with stable angina or acute coronary syndrome undergoing invasive management: a meta-analysis of randomized trials. J Cardiovasc Pharmaco 2014 ; 63 : 339–350. [CrossRef] [Google Scholar]
  10. Teng R, Butler K. Pharmacokinetics, pharmacodynamics, tolerability and safety of single ascending doses of ticagrelor, a reversibly binding oral P2Y12 receptor antagonist, in healthy subjects. Eur J Clin Pharmacol 2010 ; 66 : 487–496. [CrossRef] [PubMed] [Google Scholar]
  11. Roffi M, Patrono C, Collet JP et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European society of cardiology (ESC). Eur Heart J 2016 ; 37 : 267–315. [CrossRef] [PubMed] [Google Scholar]
  12. Angiolillo DJ. ADP receptor antagonism: what’s in the pipeline?. Am J Cardiovasc Drugs Drugs Devices Interv 2007 ; 7 : 423–432. [CrossRef] [Google Scholar]
  13. Boldron C, Besse A, Bordes MF et al. N-[6-(4-butanoyl-5-methyl-1H-pyrazol-1-yl)pyridazin-3-yl]-5-chloro-1-[2-(4-methylpiperazin-1-yl)-2-oxoethyl]-1H-indole-3-carboxamide (SAR216471), a novel intravenous and oral, reversible, and directly acting P2Y12 antagonist. J Med Chem 2014 ; 57 : 7293–7316. [CrossRef] [PubMed] [Google Scholar]
  14. Coller BS. αIIbβ3: structure and function. J Thromb Haemost 2015 ; 13 : suppl 1 S17–S25. [CrossRef] [PubMed] [Google Scholar]
  15. Shah I, Khan SO, Malhotra S et al. Eptifibatide: the evidence for its role in the management of acute coronary syndromes. Core Evid 2009 ; 4 : 49–65. [Google Scholar]
  16. Jeong YH, Tantry US, Park Y et al. Pharmacodynamic effect of cilostazol plus standard clopidogrel versus double-dose clopidogrel in patients with type 2 diabetes undergoing percutaneous coronary intervention. Diabetes Care 2012 ; 35 : 2194–2197. [CrossRef] [PubMed] [Google Scholar]
  17. Ozat M, Gungor T, Barun S et al. The effects of iloprost, a prostacyclin analogue, in experimental ischaemia/reperfusion injury in rat ovaries. Exp Toxicol Pathol 2009 ; 61 : 519–527. [CrossRef] [PubMed] [Google Scholar]
  18. Han X, Nieman MT. PAR4 (protease-activated receptor 4): particularly important 4 antiplatelet therapy. Arterioscler Thromb Vasc Biol 2018 ; 38 : 287–289. [CrossRef] [PubMed] [Google Scholar]
  19. Zhang HC, Derian CK, Andrade-Gordon P et al. Discovery and optimization of a novel series of thrombin receptor (par-1) antagonists: potent, selective peptide mimetics based on indole and indazole templates. J Med Chem 2001 ; 44 : 1021–1024. [CrossRef] [PubMed] [Google Scholar]
  20. Damiano BP, Derian CK, Maryanoff BE et al. RWJ-58259: a selective antagonist of protease activated receptor-1. Cardiovasc Drug Rev 2003 ; 21 : 313–326. [CrossRef] [PubMed] [Google Scholar]
  21. Robinson E, Knight E, Smoktunowicz N et al. Identification of an active metabolite of PAR-1 antagonist RWJ-58259 and synthesis of analogues to enhance its metabolic stability. Org Biomol Chem 2016 ; 14 : 3198–3201. [CrossRef] [PubMed] [Google Scholar]
  22. Morrow DA, Braunwald E, Bonaca MP et al. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med 2012 ; 366 : 1404–1413. [Google Scholar]
  23. Tricoci P, Huang Z, Held C et al. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J Med 2012 ; 366 : 20–33. [Google Scholar]
  24. Kosoglou T, Reyderman L, Tiessen RG et al. Pharmacodynamics and pharmacokinetics of the novel PAR-1 antagonist vorapaxar (formerly SCH 530348) in healthy subjects. Eur J Clin Pharmacol 2012 ; 68 : 249–258. [CrossRef] [PubMed] [Google Scholar]
  25. Zhang P, Gruber A, Kasuda S et al. Suppression of arterial thrombosis without affecting hemostatic parameters with a cell-penetrating PAR1 pepducin. Circulation 2012 ; 126 : 83–91. [CrossRef] [PubMed] [Google Scholar]
  26. Gurbel PA, Bliden KP, Turner SE et al. Cell-penetrating pepducin therapy targeting PAR1 in subjects with coronary artery disease. Arterioscler Thromb Vasc Biol 2016 ; 36 : 189–197. [CrossRef] [PubMed] [Google Scholar]
  27. Wong PC, Seiffert D, Bird JE, et al. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Sci Transl Med 2017; 9 : eaaf5294. [CrossRef] [PubMed] [Google Scholar]
  28. Wilson SJ, Ismat FA, Wang Z et al. PAR4 (protease-activated receptor 4) antagonism with BMS-986120 inhibits human ex vivo thrombus formation. Arterioscler Thromb Vasc Biol 2018 ; 38 : 448–456. [CrossRef] [PubMed] [Google Scholar]
  29. Pachel C, Mathes D, Arias-Loza AP et al. Inhibition of platelet GPVI protects against myocardial ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 2016 ; 36 : 629–635. [CrossRef] [PubMed] [Google Scholar]
  30. Chang CH, Chung CH, Tu YS et al. Trowaglerix venom polypeptides as a novel antithrombotic agent by targeting immunoglobulin-like domains of glycoprotein VI in platelet. Arterioscler Thromb Vasc Biol 2017 ; 37 : 1307–1314. [CrossRef] [PubMed] [Google Scholar]
  31. Voors-Pette C, Lebozec K, Dogterom P et al. Safety and tolerability, pharmacokinetics, and pharmacodynamics of ACT017, an antiplatelet GPVI (glycoprotein VI) Fab: first-in-human healthy volunteer trial. Arterioscler Thromb Vasc Biol 2019 ; 39 : 956–964. [CrossRef] [PubMed] [Google Scholar]
  32. van Eeuwijk JMM, Stegner D, Lamb DJ et al. The novel oral Syk inhibitor, Bl1002494, protects mice from arterial thrombosis and thromboinflammatory brain infarction. Arterioscler Thromb Vasc Biol 2016 ; 36 : 1247–1253. [CrossRef] [PubMed] [Google Scholar]
  33. Piatt R, Paul DS, Lee RH et al. Mice Expressing low levels of CalDAG-GEFI exhibit markedly impaired platelet activation with minor impact on hemostasis. Arterioscler Thromb Vasc Biol 2016 ; 36 : 1838–1846. [CrossRef] [PubMed] [Google Scholar]
  34. Adili R, Tourdot BE, Mast K et al. First selective 12-LOX inhibitor, ML355, impairs thrombus formation and vessel occlusion in vivo with minimal effects on hemostasis. Arterioscler Thromb Vasc Biol 2017 ; 37 : 1828–1839. [CrossRef] [PubMed] [Google Scholar]
  35. Liu Y, Hu M, Luo D et al. Class III PI3K positively regulates platelet activation and thrombosis via PI(3)P-directed function of NADPH oxidase. Arterioscler Thromb Vasc Biol 2017 ; 37 : 2075–2086. [CrossRef] [PubMed] [Google Scholar]
  36. Gremmel T, Yanachkov IB, Yanachkova MI et al. Synergistic inhibition of both P2Y1 and P2Y12 adenosine diphosphate receptors as novel approach to rapidly attenuate platelet-mediated thrombosis. Arterioscler Thromb Vasc Biol 2016 ; 36 : 501–509. [CrossRef] [PubMed] [Google Scholar]
  37. Dangelmaier C, Manne BK, Liverani E et al. PDK1 selectively phosphorylates Thr(308) on Akt and contributes to human platelet functional responses. Thromb Haemost 2014 ; 111 : 508–517. [CrossRef] [PubMed] [Google Scholar]
  38. Münzer P, Walker-Allgaier B, Geue S et al. PDK1 determines collagen-dependent platelet Ca2+ signaling and is critical to development of ischemic stroke in vivo. Arterioscle Thromb Vasc Biol 2016 ; 36 : 1507–1516. [CrossRef] [Google Scholar]
  39. Wadanoli M, Sako D, Shaw GD et al. The von Willebrand factor antagonist (GPG-290) prevents coronary thrombosis without prolongation of bleeding time. Thromb Haemost 2007 ; 98 : 397–405. [CrossRef] [PubMed] [Google Scholar]
  40. Jilma-Stohlawetz P, Knöbl P, Gilbert JC et al. The anti-von Willebrand factor aptamer ARC1779 increases von Willebrand factor levels and platelet counts in patients with type 2B von Willebrand disease. Thromb Haemost 2012 ; 108 : 284–290. [CrossRef] [PubMed] [Google Scholar]
  41. Sathish J, Falati S, Croce K et al. Antibody cross-linking of human platelet P-selectin induces calcium entry by a mechanism dependent upon Fcγ receptor IIA. Thromb Haemost 2004 ; 92 : 598–605. [CrossRef] [PubMed] [Google Scholar]
  42. Tanasescu S, Lkvesque H, Thuillez’ C. Pharmacology of aspirine. Rev Med Interne 2000 ; 21 : suppl 1 s18–s26. [Google Scholar]
  43. Bennett CL, Connors JM, Carwile JM et al. Thrombotic thrombocytopenic purpura associated with clopidogrel. N Engl J Med 2000 ; 342 : 1773–1777. [Google Scholar]
  44. Schnapf A.. Prasugrel versus clopidogrel: new management strategies for acute coronary syndrome. J Cardiovasc Nurs 2013 ; 28 : 483–494. [CrossRef] [PubMed] [Google Scholar]
  45. Wallentin L, Becker RC, Budaj A et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009 ; 361 : 1045–1057. [Google Scholar]
  46. Cada DJ, Baker DE, Ingram KT. Cangrelor. Hosp Pharm 2015 ; 50 : 922–929. [PubMed] [Google Scholar]
  47. Kim HH, Sawada N, Soydan G et al. Additive effects of statin and dipyridamole on cerebral blood flow and stroke protection. J Cereb Blood Flow Metab 2008 ; 28 : 1285–1293. [CrossRef] [PubMed] [Google Scholar]
  48. DiNicolantonio JJ, Lavie CJ, Fares H et al. Meta-analysis of cilostazol versus aspirin for the secondary prevention of stroke. Am J Cardiol 2013 ; 112 : 1230–1234. [CrossRef] [PubMed] [Google Scholar]
  49. Gessler T, Ghofrani HA, Held M et al. The safety and pharmacokinetics of rapid iloprost aerosol delivery via the BREELIB nebulizer in pulmonary arterial hypertension. Pulm Circ 2017 ; 7 : 505–513. [PubMed] [Google Scholar]
  50. De Luca G, Navarese E, Marino P. Risk profile and benefits from Gp IIb-IIIa inhibitors among patients with ST-segment elevation myocardial infarction treated with primary angioplasty: a meta-regression analysis of randomized trials. Eur Heart J 2009 ; 30 : 2705–2713. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.