Open Access
Issue
Med Sci (Paris)
Volume 36, Number 4, Avril 2020
Page(s) 367 - 375
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020063
Published online 01 May 2020
  1. Rubin RH. Prevention of cytomegalovirus infection in organ transplant recipients. Transpl Infect Dis 2000 ; 2 : 99–100. [CrossRef] [PubMed] [Google Scholar]
  2. Pereyra F, Rubin RH. Prevention and treatment of cytomegalovirus infection in solid organ transplant recipients. Curr Opin Infect Dis 2004 ; 17 : 357–361. [CrossRef] [PubMed] [Google Scholar]
  3. Andouard D, Mazeron MC, Ligat G, et al. Contrasting effect of new HCMV pUL54 mutations on antiviral drug susceptibility: Benefits and limits of 3D analysis. Antiviral Res 2016 ; 129 : 115–119. [CrossRef] [PubMed] [Google Scholar]
  4. Leruez-Ville M, Ghout I, Bussières L, et al. In utero treatment of congenital cytomegalovirus infection with valacyclovir in a multicenter, open-label, phase II study. Am J Obstet Gynecol 2016; 215 : 462.e1-e10. [Google Scholar]
  5. McVoy MA, Adler SP. Human cytomegalovirus DNA replicates after early circularization by concatemer formation, and inversion occurs within the concatemer. J Virol 1994 ; 68 : 1040–1051. [CrossRef] [PubMed] [Google Scholar]
  6. Scheffczik H, Savva CGW, Holzenburg A, et al. The terminase subunits pUL56 and pUL89 of human cytomegalovirus are DNA-metabolizing proteins with toroidal structure. Nucleic Acids Res 2002 ; 30 : 1695–1703. [CrossRef] [PubMed] [Google Scholar]
  7. Borst EM, Kleine-Albers J, Gabaev I, et al. The human cytomegalovirus UL51 protein is essential for viral genome cleavage-packaging and interacts with the terminase subunits pUL56 and pUL89. J Virol 2013 ; 87 : 1720–1732. [CrossRef] [PubMed] [Google Scholar]
  8. Borst EM, Wagner K, Binz A, et al. The essential human cytomegalovirus gene UL52 is required for cleavage-packaging of the viral genome. J Virol 2008 ; 82 : 2065–2078. [CrossRef] [PubMed] [Google Scholar]
  9. Borst EM, Bauerfeind R, Binz A, et al. The Essential human cytomegalovirus proteins pUL77 and pUL93 are structural components necessary for viral genome encapsidation. J Virol 2016 ; 90 : 5860–5875. [CrossRef] [PubMed] [Google Scholar]
  10. DeRussy BM, Tandon R. Human cytomegalovirus pUL93 is required for viral genome cleavage and packaging. J Virol 2015 ; 89 : 12221–12225. [CrossRef] [PubMed] [Google Scholar]
  11. Köppen-Rung P, Dittmer A, Bogner E. Intracellular distributions of capsid-associated pUL77 of HCMV and interactions with packaging proteins and pUL93. J Virol 2016 ; 90 : 5876–5885. [CrossRef] [PubMed] [Google Scholar]
  12. DeRussy BM, Tandon R. Human cytomegalovirus pUL93 is required for viral genome cleavage and packaging. J Virol 2015 ; 89 : 12221–12225. [CrossRef] [PubMed] [Google Scholar]
  13. Bogner E.. Human cytomegalovirus terminase as a target for antiviral chemotherapy. Rev Med Virol 2002 ; 12 : 115–127. [CrossRef] [PubMed] [Google Scholar]
  14. Champier G, Couvreux A, Hantz S, et al. Putative functional domains of human cytomegalovirus pUL56 involved in dimerization and benzimidazole D-ribonucleoside activity. Antivir Ther 2008 ; 13 : 643–654. [PubMed] [Google Scholar]
  15. Addison C, Rixon FJ, Preston VG. Herpes simplex virus type 1 UL28 gene product is important for the formation of mature capsids. J GenVirol 1990 ; 71 : 2377–2384. [Google Scholar]
  16. Bogner E, Reschke M, Reis B, et al. Identification of the gene product encoded by ORF UL56 of the human cytomegalovirus genome. Virology 1993 ; 196 : 290–293. [CrossRef] [PubMed] [Google Scholar]
  17. Savva CGW, Holzenburg A, Bogner E. Insights into the structure of human cytomegalovirus large terminase subunit pUL56. FEBS Lett 2004 ; 563 : 135–140. [CrossRef] [PubMed] [Google Scholar]
  18. Hwang J-S, Bogner E. ATPase activity of the terminase subunit pUL56 of human cytomegalovirus. J Biol Chem 2002 ; 277 : 6943–6948. [CrossRef] [PubMed] [Google Scholar]
  19. Bogner E, Radsak K, Stinski MF. The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J Virol 1998 ; 72 : 2259–2264. [CrossRef] [PubMed] [Google Scholar]
  20. Giesen K, Radsak K, Bogner E. Targeting of the gene product encoded by ORF UL56 of human cytomegalovirus into viral replication centers. FEBS Lett 2000 ; 471 : 215–218. [CrossRef] [PubMed] [Google Scholar]
  21. Neuber S, Wagner K, Goldne T, et al. Mutual interplay between the human cytomegalovirus terminase subunits pUL51, pUL56, and pUL89 promotes terminase complex formation. J Virol 2017; 91. pii: e02384–16. [CrossRef] [PubMed] [Google Scholar]
  22. Thoma C, Borst E, Messerle M, et al. Identification of the interaction domain of the small terminase subunit pUL89 with the large subunit pUL56 of human cytomegalovirus. Biochemistry 2006 ; 45 : 8855–8863. [CrossRef] [PubMed] [Google Scholar]
  23. Ligat G, Jacquet C, Chou S, et al. Identification of a short sequence in the HCMV terminase pUL56 essential for interaction with pUL89 subunit. Sci Rep 2017 ; 7 : 8796. [CrossRef] [PubMed] [Google Scholar]
  24. Scholz B, Rechter S, Drach JC, et al. Identification of the ATP-binding site in the terminase subunit pUL56 of human cytomegalovirus. Nucleic Acids Res 2003 ; 31 : 1426–1433. [CrossRef] [PubMed] [Google Scholar]
  25. Ligat G, Couvreux A, Cazal R, et al. Highlighting of a LAGLIDADG and a zing finger motifs located in the pUL56 sequence crucial for HCMV replication. Viruses 2019; 11. [Google Scholar]
  26. Champier G, Hantz S, Couvreux A, et al. New functional domains of human cytomegalovirus pUL89 predicted by sequence analysis and three-dimensional modelling of the catalytic site DEXDc. Antivir Ther 2007 ; 12 : 217–232. [PubMed] [Google Scholar]
  27. Couvreux A, Hantz S, Marquant R, et al. Insight into the structure of the pUL89 C-terminal domain of the human cytomegalovirus terminase complex. Proteins 2010 ; 78 : 1520–1530. [PubMed] [Google Scholar]
  28. Nadal M, Mas PJ, Blanco AG, et al. Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain. Proc Natl Acad Sci USA 2010 ; 107 : 16078–16083. [CrossRef] [Google Scholar]
  29. Wang JB, Zhu Y, McVoy MA, et al. Changes in subcellular localization reveal interactions between human cytomegalovirus terminase subunits. Virol J 2012 ; 9 : 315. [CrossRef] [PubMed] [Google Scholar]
  30. Neuber S, Wagner K, Messerle M, et al. The C-terminal part of the human cytomegalovirus terminase subunit pUL51 is central for terminase complex assembly. J Gen Virol 2017 ; 99 : 119–134. [CrossRef] [PubMed] [Google Scholar]
  31. Borst EM, Wagner K, Binz A, et al. The essential human cytomegalovirus gene UL52 is required for cleavage-packaging of the viral genome. J Virol 2008 ; 82 : 2065–2078. [CrossRef] [PubMed] [Google Scholar]
  32. DeRussy BM, Boland MT, Tandon R. Human cytomegalovirus pUL93 links nucleocapsid maturation and nuclear egress. J Virol 2016 ; 90 : 7109–7117. [CrossRef] [PubMed] [Google Scholar]
  33. Ligat G, Cazal R, Hantz S, et al. The human cytomegalovirus terminase complex as an antiviral target: a close-up view. FEMS Microbiol Rev 2018 ; 42 : 137–145. [CrossRef] [PubMed] [Google Scholar]
  34. Goldner T, Hewlett G, Ettischer N, et al. The novel anticytomegalovirus compound AIC246 (Letermovir) inhibits human cytomegalovirus replication through a specific antiviral mechanism that involves the viral terminase. J Virol 2011 ; 85 : 10884–10893. [CrossRef] [PubMed] [Google Scholar]
  35. Lischka P, Hewlett G, Wunberg T, et al. In vitro and in vivo activities of the novel anticytomegalovirus compound AIC246. Antimicrob. Agents Chemother 2010 ; 54 : 1290–1297. [CrossRef] [PubMed] [Google Scholar]
  36. Stoelben S, Arns W, Renders L, et al. Preemptive treatment of cytomegalovirus infection in kidney transplant recipients with letermovir: results of a phase 2a study. Transplant 2014 ; 27 : 77–86. [Google Scholar]
  37. Chemaly RF, Ullmann AJ, Stoelben S, et al. Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N Engl J Med 2014 ; 370 : 1781–1789. [Google Scholar]
  38. Piret J, Goyette N, Boivin G. Drug susceptibility and replicative capacity of multi-drug resistant recombinant human cytomegalovirus harboring mutations in UL56 and UL54 genes. Antimicrob Agents Chemother 2017; 61. pii: e01044–17. [CrossRef] [PubMed] [Google Scholar]
  39. Goldner T, Hempel C, Ruebsamen-Schaeff H, et al. Geno- and phenotypic characterization of human cytomegalovirus mutants selected in vitro after letermovir (AIC246) exposure. Antimicrob. Agents Chemother 2014 ; 58 : 610–613. [CrossRef] [PubMed] [Google Scholar]
  40. Chou S.. Comparison of cytomegalovirus terminase gene mutations selected after exposure to three distinct inhibitor compounds. Antimicrob Agents Chemother 2017 ; 61. [Google Scholar]
  41. Chou S. A third component of the human cytomegalovirus terminase complex is involved in letermovir resistance. Antiviral Res 2017 ; 148 : 1–4. [CrossRef] [PubMed] [Google Scholar]
  42. Komatsu TE, Hodowanec AC, Colberg-Poley AM, et al. In-depth genomic analyses identified novel letermovir resistance-associated substitutions in the cytomegalovirus UL56 and UL89 gene products. Antiviral Res 2019 ; 169 : 104549. [CrossRef] [PubMed] [Google Scholar]
  43. Douglas CM, Barnard R, Holder D, et al. Letermovir resistance analysis in a clinical trial of cytomegalovirus prophylaxis for hematopoietic stem cell transplant recipients. J Infect Dis 2019; pii: jiz577. [Google Scholar]
  44. Marschall M, Stamminger T, Urban A, et al. In vitro evaluation of the activities of the novel anticytomegalovirus compound AIC246 (letermovir) against herpesviruses and other human pathogenic viruses. Antimicrob. Agents Chemother 2012 ; 56 : 1135–1137. [CrossRef] [PubMed] [Google Scholar]
  45. Champier G, Couvreux A, Hantz S, et al. Putative functional domains of human cytomegalovirus pUL56 involved in dimerization and benzimidazole D-ribonucleoside activity. Antivir Ther 2008 ; 13 : 643–654. [PubMed] [Google Scholar]
  46. Lischka P, Michel D, Zimmermann H. Characterization of cytomegalovirus breakthrough events in a letermovir (AIC246, MK 8228) phase 2 prophylaxis trial. J Infect Dis 2015 ; 213 : 23–30. [CrossRef] [PubMed] [Google Scholar]
  47. Goldner T, Hempel C, Ruebsamen-Schaeff H, et al. Geno- and phenotypic characterization of human cytomegalovirus mutants selected in vitro after letermovir (AIC246) exposure. Antimicrob Agents Chemother 2014 ; 58 : 610–613. [CrossRef] [PubMed] [Google Scholar]
  48. Vial R, Zandotti C, Alain S, et al. Brincidofovir use after foscarnet crystal nephropathy in a kidney transplant recipient with multiresistant cytomegalovirus infection. Case Rep Transplant 2017 ; 2017 : 3624146. [Google Scholar]
  49. Marty FM, Winston DJ, Chemaly RF, et al. A randomized, double-blind, placebo-controlled phase 3 trial of oral brincidofovir for cytomegalovirus prophylaxis in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2019 ; 25 : 369–381. [CrossRef] [PubMed] [Google Scholar]
  50. Kaptein SJF, Efferth T, Leis M, et al. The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antiviral Res 2006 ; 69 : 60–69. [CrossRef] [PubMed] [Google Scholar]
  51. Chou S, Marousek G, Auerochs S, et al. The unique antiviral activity of artesunate is broadly effective against human cytomegaloviruses including therapy-resistant mutants. Antiviral Res 2011 ; 92 : 364–368. [CrossRef] [PubMed] [Google Scholar]
  52. Germi R, Mariette C, Alain S, et al. Success and failure of artesunate treatment in five transplant recipients with disease caused by drug-resistant cytomegalovirus. Antiviral Res 2014 ; 101 : 57–61. [CrossRef] [PubMed] [Google Scholar]
  53. Wolf DG, Shimoni A, Resnick IB, et al. Human cytomegalovirus kinetics following institution of artesunate after hematopoietic stem cell transplantation. Antiviral Res 2011 ; 90 : 183–186. [CrossRef] [PubMed] [Google Scholar]
  54. Lyss G, Knorre A, Schmidt TJ, et al. The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65. J Biol Chem 1998 ; 273 : 33508–33516. [CrossRef] [PubMed] [Google Scholar]
  55. Hutterer C, Niemann I, Milbradt J, et al. The broad-spectrum antiinfective drug artesunate interferes with the canonical nuclear factor kappa B (NF-κB) pathway by targeting RelA/p65. Antiviral Res 2015 ; 124 : 101–109. [CrossRef] [PubMed] [Google Scholar]
  56. Koszalka GW, Johnson NW, Good SS, et al. Preclinical and toxicology studies of 1263W94, a potent and selective inhibitor of human cytomegalovirus replication. Antimicrob Agents Chemother 2002 ; 46 : 2373–2380. [CrossRef] [PubMed] [Google Scholar]
  57. Marty FM, Ljungman P, Papanicolaou GA, et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis 2011 ; 11 : 284–292. [CrossRef] [PubMed] [Google Scholar]
  58. Alain S, Revest M, Veyer D, et al. Maribavir use in practice for cytomegalovirus infection in French transplantation centers. Transplant Proc 2013 ; 45 : 1603–1607. [CrossRef] [PubMed] [Google Scholar]
  59. Papanicolaou GA, Silveira FP, Langston AA, et al. Maribavir for refractory or resistant cytomegalovirus infections in hematopoietic-cell or solid-organ transplant recipients: a randomized, dose-ranging, double-blind, phase 2 study. Clin Infect Dis 2019 ; 68 : 1255–1264. [CrossRef] [PubMed] [Google Scholar]
  60. Ligat G, Da Re S, Alain S, et al. Identification of amino acids essential for viral replication in the HCMV helicase-primase complex. Front Microbiol 2018 ; 9 : 2483. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.