Open Access
Issue
Med Sci (Paris)
Volume 35, Number 6-7, Juin-Juillet 2019
Page(s) 519 - 526
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019094
Published online 05 July 2019
  1. Otto SP. The evolutionary consequences of polyploidy. Cell 2007 ; 131 : 452–462. [CrossRef] [PubMed] [Google Scholar]
  2. Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet 2017 ; 18 : 411–424. [CrossRef] [PubMed] [Google Scholar]
  3. Gentric G, Desdouets C. Polyploidization in liver tissue. Am J Pathol 2014 ; 184 : 322–331. [CrossRef] [PubMed] [Google Scholar]
  4. Gallagher JP, Grover CE, Hu G, et al. Insights into the ecology and evolution of polyploid plants through network analysis. Mol Ecol 2016 ; 25 : 2644–2660. [CrossRef] [PubMed] [Google Scholar]
  5. Ramsey J, Schemske DW. Pathways, mechanisms and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 1998 ; 29 : 467–501. [CrossRef] [Google Scholar]
  6. Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet 2000 ; 34 : 401–437. [CrossRef] [PubMed] [Google Scholar]
  7. Gallardo MH, Bickham JW, Honeycutt RL, et al. Discovery of tetraploidy in a mammal. Nature 1999 ; 401 : 341. [CrossRef] [PubMed] [Google Scholar]
  8. Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 2011 ; 27 : 585–610. [CrossRef] [Google Scholar]
  9. Pandit SK, Westendorp B, de Bruin A. Physiological significance of polyploidization in mammalian cells. Trends Cell Biol 2013 ; 23 : 556–566. [CrossRef] [Google Scholar]
  10. Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 2007 ; 17 : 157–162. [CrossRef] [PubMed] [Google Scholar]
  11. Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 2004 ; 5 : 45–54. [CrossRef] [PubMed] [Google Scholar]
  12. Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med 2017 ; 376 : 2109–2121. [CrossRef] [Google Scholar]
  13. Zack TI, Schumacher SE, Carter SL, et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet 2013 ; 45 : 1134–1140. [CrossRef] [Google Scholar]
  14. Larsson LI, Bjerregaard B, Talts JF. Cell fusions in mammals. Histochem Cell Biol 2008 ; 129 : 551–561. [CrossRef] [PubMed] [Google Scholar]
  15. Duelli D, Lazebnik Y. Cell-to-cell fusion as a link between viruses and cancer. Nat Rev Cancer 2007 ; 7 : 968–976. [CrossRef] [Google Scholar]
  16. Gao P, Zheng J. Oncogenic virus-mediated cell fusion: new insights into initiation and progression of oncogenic viruses–related cancers. Cancer Lett 2011 ; 303 : 1–8. [CrossRef] [Google Scholar]
  17. Ovrebo JI, Edgar BA. Polyploidy in tissue homeostasis and regeneration. Development 2018 ; 145 : [CrossRef] [Google Scholar]
  18. Edgar BA, Zielke N, Gutierrez C. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 2014 ; 15 : 197–210. [CrossRef] [PubMed] [Google Scholar]
  19. Fox DT, Duronio RJ. Endoreplication and polyploidy: insights into development and disease. Development 2013 ; 140 : 3–12. [CrossRef] [Google Scholar]
  20. Davoli T, de Lange T. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 2012 ; 21 : 765–776. [CrossRef] [PubMed] [Google Scholar]
  21. Li F, Wang X, Capasso JM, et al. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996 ; 28 : 1737–1746. [CrossRef] [PubMed] [Google Scholar]
  22. Zimmet J, Ravid K. Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system. Exp Hematol 2000 ; 28 : 3–16. [CrossRef] [PubMed] [Google Scholar]
  23. Liu Z, Yue S, Chen X, et al. Regulation of cardiomyocyte polyploidy and multinucleation by CyclinG1. Circ Res 2010 ; 106 : 1498–1506. [CrossRef] [Google Scholar]
  24. Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 2007 ; 87 : 521–544. [CrossRef] [PubMed] [Google Scholar]
  25. Engel FB, Schebesta M, Keating MT. Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 2006 ; 41 : 601–612. [CrossRef] [PubMed] [Google Scholar]
  26. Lacroix B, Maddox AS. Cytokinesis, ploidy and aneuploidy. J Pathol 2012 ; 226 : 338–351. [CrossRef] [PubMed] [Google Scholar]
  27. Schoenfelder KP, Fox DT. The expanding implications of polyploidy. J Cell Biol 2015 ; 209 : 485–491. [CrossRef] [PubMed] [Google Scholar]
  28. Cao J, Wang J, Jackman CP, et al. Tension creates an endoreplication wavefront that leads regeneration of epicardial tissue. Dev Cell 2017 ; 42 : 600–15 e4. [Google Scholar]
  29. Lazzeri E, Angelotti ML, Peired A, et al. Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nat Commun 2018 ; 9 : 1344. [CrossRef] [PubMed] [Google Scholar]
  30. Rios AC, Fu NY, Jamieson PR, et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun 2016 ; 7 : 11400. [CrossRef] [PubMed] [Google Scholar]
  31. Guidotti JE, Bregerie O, Robert A, et al. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 2003 ; 278 : 19095–19101. [CrossRef] [PubMed] [Google Scholar]
  32. Celton-Morizur S, Merlen G, Couton D, et al. Polyploidy and liver proliferation: central role of insulin signaling. Cell Cycle 2010 ; 9 : 460–466. [CrossRef] [Google Scholar]
  33. Celton-Morizur S, Merlen G, Couton D, et al. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 2009 ; 119 : 1880–1887. [PubMed] [Google Scholar]
  34. Celton-Morizur S, Desdouets C. Polyploïdie cellulaire dans le tissu hépatique : nouveau rôle de l’insuline. Med Sci (Paris) 2009 ; 25 : 651–653. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Margall-Ducos G, Morizur-Celton S, Couton D, et al. Liver Tetraploidization is Controlled by a New Process of Incomplete Cytokinesis. J Cell Sci 2007 ; 120 : 3633–3639. [CrossRef] [Google Scholar]
  36. Pandit SK, Westendorp B, Nantasanti S, et al. E2F8 is essential for polyploidization in mammalian cells. Nat Cell Biol 2012 ; 14 : 1181–1191. [CrossRef] [PubMed] [Google Scholar]
  37. Hsu SH, Delgado ER, Otero PA, et al. MicroRNA-122 regulates polyploidization in the murine liver. Hepatology 2016. [Google Scholar]
  38. Girard J, Issad T, Maury J, et al. Influence of the weaning diet on the changes of glucose metabolism and of insulin sensitivity. Proc Nutr Soc 1993 ; 52 : 325–333. [CrossRef] [Google Scholar]
  39. Anatskaya OV, Vinogradov AE. Somatic polyploidy promotes cell function under stress and energy depletion: evidence from tissue-specific mammal transcriptome. Funct Integr Genomics 2010 ; 10 : 433–446. [CrossRef] [PubMed] [Google Scholar]
  40. Lu P, Prost S, Caldwell H, et al. Microarray analysis of gene expression of mouse hepatocytes of different ploidy. Mamm Genome 2007 ; 18 : 617–626. [CrossRef] [PubMed] [Google Scholar]
  41. Anatskaya OV, Vinogradov AE. Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics 2007 ; 89 : 70–80. [CrossRef] [PubMed] [Google Scholar]
  42. Miettinen TP, Pessa HK, Caldez MJ, et al. Identification of transcriptional and metabolic programs related to mammalian cell size. Curr Biol 2014 ; 24 : 598–608. [CrossRef] [PubMed] [Google Scholar]
  43. Gupta S.. Hepatic polyploidy and liver growth control. Semin Cancer Biol 2000 ; 10 : 161–171. [CrossRef] [PubMed] [Google Scholar]
  44. Desdouets C, Avila MA. Inhibiting cytokinesis in the liver: A new way to reduce tumor development. Gastroenterology 2018 ; 154 : 1229–1231. [CrossRef] [PubMed] [Google Scholar]
  45. Yang XM, Cao XY, He P, et al. Overexpression of Rac GTPase activating protein 1 contributes to proliferation of cancer cells by reducing Hippo signaling to promote cytokinesis. Gastroenterology 2018 ; 155 : 1233–49 e22. [PubMed] [Google Scholar]
  46. Zhang S, Nguyen LH, Zhou K, et al. Knockdown of anillin actin binding protein blocks cytokinesis in hepatocytes and reduces liver tumor development in mice without affecting regeneration. Gastroenterology 2018 ; 154 : 1421–1434. [CrossRef] [PubMed] [Google Scholar]
  47. Gentric G, Desdouets C. Liver polyploidy: Dr Jekyll or Mr Hyde?. Oncotarget 2015 ; 6 : 8430–8431. [CrossRef] [PubMed] [Google Scholar]
  48. Gentric G, Maillet V, Paradis V, et al. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. J Clin Invest 2015 ; 125 : 981–992. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.