Open Access
Issue
Med Sci (Paris)
Volume 35, Number 6-7, Juin-Juillet 2019
Page(s) 515 - 518
Section Le Magazine
DOI https://doi.org/10.1051/medsci/2019108
Published online 05 July 2019
  1. Martinat C, Peschanski M. L’heure est venue du (re)positionnement thérapeutique des maladies ultra-rares. Med Sci (Paris) 2018 ; 34 : 1019–1021. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Weirauch MT, Dehmer M, Emmert-Streib F, Salvador A, Graber A. Gene coexpression networks for the analysis of DNA microarray data. Applied statistics for network biology: methods in systems biology 2011 ; New York Wiley 215. [CrossRef] [Google Scholar]
  3. Califano A, Butte AJ, Friend S, et al. Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat Genet 2012 ; 44 : 841–847. [Google Scholar]
  4. Heinig M, Petretto E, Wallace C, et al. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 2010 ; 467 : 460–464. [CrossRef] [PubMed] [Google Scholar]
  5. Kang H, Kerloc’h A, Rotival M, et al. Kcnn4 is a regulator of macrophage multinucleation in bone homeostasis and inflammatory disease. Cell Rep 2014 ; 8 : 1210–1214. [CrossRef] [PubMed] [Google Scholar]
  6. Johnson MR, Behmoaras J, Bottolo L, et al. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nat Commun 2015 ; 6 : 6031. [CrossRef] [PubMed] [Google Scholar]
  7. Clarke DJB, Kuleshov MV, Schilder BM, et al. eXpression2Kinases (X2K) web: linking expression signatures to upstream cell signaling networks. Nucleic Acids Res 2018 ; 46 : W171–W179. [CrossRef] [PubMed] [Google Scholar]
  8. Srivastava PK, van Eyll J, Godard P, et al. A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target. Nat Commun 2018 ; 9 : 3561. [CrossRef] [PubMed] [Google Scholar]
  9. Elmore MRP, Najafi AR, Koike MA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 2014 ; 82 : 380–397. [CrossRef] [PubMed] [Google Scholar]
  10. Lamb J, Crawford ED, Peck D, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006 ; 313 : 1929–1935. [Google Scholar]
  11. Delahaye-Duriez A, Srivastava P, Shkura K, et al. Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery. Genome Biol 2016 ; 17 : 245. [CrossRef] [PubMed] [Google Scholar]
  12. Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017 ; 171 : 1437–52 e17. [Google Scholar]
  13. Keenan AB, Jenkins SL, Jagodnik KM, et al. The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst 2018 ; 6 : 13–24. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.