Open Access
Numéro |
Med Sci (Paris)
Volume 35, Numéro 6-7, Juin-Juillet 2019
|
|
---|---|---|
Page(s) | 519 - 526 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2019094 | |
Publié en ligne | 5 juillet 2019 |
- Otto SP. The evolutionary consequences of polyploidy. Cell 2007 ; 131 : 452–462. [CrossRef] [PubMed] [Google Scholar]
- Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet 2017 ; 18 : 411–424. [CrossRef] [PubMed] [Google Scholar]
- Gentric G, Desdouets C. Polyploidization in liver tissue. Am J Pathol 2014 ; 184 : 322–331. [CrossRef] [PubMed] [Google Scholar]
- Gallagher JP, Grover CE, Hu G, et al. Insights into the ecology and evolution of polyploid plants through network analysis. Mol Ecol 2016 ; 25 : 2644–2660. [CrossRef] [PubMed] [Google Scholar]
- Ramsey J, Schemske DW. Pathways, mechanisms and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 1998 ; 29 : 467–501. [Google Scholar]
- Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet 2000 ; 34 : 401–437. [CrossRef] [PubMed] [Google Scholar]
- Gallardo MH, Bickham JW, Honeycutt RL, et al. Discovery of tetraploidy in a mammal. Nature 1999 ; 401 : 341. [CrossRef] [PubMed] [Google Scholar]
- Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 2011 ; 27 : 585–610. [CrossRef] [PubMed] [Google Scholar]
- Pandit SK, Westendorp B, de Bruin A. Physiological significance of polyploidization in mammalian cells. Trends Cell Biol 2013 ; 23 : 556–566. [Google Scholar]
- Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 2007 ; 17 : 157–162. [CrossRef] [PubMed] [Google Scholar]
- Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 2004 ; 5 : 45–54. [CrossRef] [PubMed] [Google Scholar]
- Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med 2017 ; 376 : 2109–2121. [Google Scholar]
- Zack TI, Schumacher SE, Carter SL, et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet 2013 ; 45 : 1134–1140. [Google Scholar]
- Larsson LI, Bjerregaard B, Talts JF. Cell fusions in mammals. Histochem Cell Biol 2008 ; 129 : 551–561. [CrossRef] [PubMed] [Google Scholar]
- Duelli D, Lazebnik Y. Cell-to-cell fusion as a link between viruses and cancer. Nat Rev Cancer 2007 ; 7 : 968–976. [Google Scholar]
- Gao P, Zheng J. Oncogenic virus-mediated cell fusion: new insights into initiation and progression of oncogenic viruses–related cancers. Cancer Lett 2011 ; 303 : 1–8. [Google Scholar]
- Ovrebo JI, Edgar BA. Polyploidy in tissue homeostasis and regeneration. Development 2018 ; 145 : [Google Scholar]
- Edgar BA, Zielke N, Gutierrez C. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 2014 ; 15 : 197–210. [CrossRef] [PubMed] [Google Scholar]
- Fox DT, Duronio RJ. Endoreplication and polyploidy: insights into development and disease. Development 2013 ; 140 : 3–12. [CrossRef] [PubMed] [Google Scholar]
- Davoli T, de Lange T. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 2012 ; 21 : 765–776. [CrossRef] [PubMed] [Google Scholar]
- Li F, Wang X, Capasso JM, et al. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996 ; 28 : 1737–1746. [CrossRef] [PubMed] [Google Scholar]
- Zimmet J, Ravid K. Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system. Exp Hematol 2000 ; 28 : 3–16. [CrossRef] [PubMed] [Google Scholar]
- Liu Z, Yue S, Chen X, et al. Regulation of cardiomyocyte polyploidy and multinucleation by CyclinG1. Circ Res 2010 ; 106 : 1498–1506. [PubMed] [Google Scholar]
- Ahuja P, Sdek P, MacLellan WR. Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 2007 ; 87 : 521–544. [Google Scholar]
- Engel FB, Schebesta M, Keating MT. Anillin localization defect in cardiomyocyte binucleation. J Mol Cell Cardiol 2006 ; 41 : 601–612. [CrossRef] [PubMed] [Google Scholar]
- Lacroix B, Maddox AS. Cytokinesis, ploidy and aneuploidy. J Pathol 2012 ; 226 : 338–351. [CrossRef] [PubMed] [Google Scholar]
- Schoenfelder KP, Fox DT. The expanding implications of polyploidy. J Cell Biol 2015 ; 209 : 485–491. [CrossRef] [PubMed] [Google Scholar]
- Cao J, Wang J, Jackman CP, et al. Tension creates an endoreplication wavefront that leads regeneration of epicardial tissue. Dev Cell 2017 ; 42 : 600–15 e4. [Google Scholar]
- Lazzeri E, Angelotti ML, Peired A, et al. Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nat Commun 2018 ; 9 : 1344. [CrossRef] [PubMed] [Google Scholar]
- Rios AC, Fu NY, Jamieson PR, et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun 2016 ; 7 : 11400. [CrossRef] [PubMed] [Google Scholar]
- Guidotti JE, Bregerie O, Robert A, et al. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 2003 ; 278 : 19095–19101. [CrossRef] [PubMed] [Google Scholar]
- Celton-Morizur S, Merlen G, Couton D, et al. Polyploidy and liver proliferation: central role of insulin signaling. Cell Cycle 2010 ; 9 : 460–466. [CrossRef] [PubMed] [Google Scholar]
- Celton-Morizur S, Merlen G, Couton D, et al. The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents. J Clin Invest 2009 ; 119 : 1880–1887. [PubMed] [Google Scholar]
- Celton-Morizur S, Desdouets C. Polyploïdie cellulaire dans le tissu hépatique : nouveau rôle de l’insuline. Med Sci (Paris) 2009 ; 25 : 651–653. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Margall-Ducos G, Morizur-Celton S, Couton D, et al. Liver Tetraploidization is Controlled by a New Process of Incomplete Cytokinesis. J Cell Sci 2007 ; 120 : 3633–3639. [Google Scholar]
- Pandit SK, Westendorp B, Nantasanti S, et al. E2F8 is essential for polyploidization in mammalian cells. Nat Cell Biol 2012 ; 14 : 1181–1191. [CrossRef] [PubMed] [Google Scholar]
- Hsu SH, Delgado ER, Otero PA, et al. MicroRNA-122 regulates polyploidization in the murine liver. Hepatology 2016. [Google Scholar]
- Girard J, Issad T, Maury J, et al. Influence of the weaning diet on the changes of glucose metabolism and of insulin sensitivity. Proc Nutr Soc 1993 ; 52 : 325–333. [Google Scholar]
- Anatskaya OV, Vinogradov AE. Somatic polyploidy promotes cell function under stress and energy depletion: evidence from tissue-specific mammal transcriptome. Funct Integr Genomics 2010 ; 10 : 433–446. [CrossRef] [PubMed] [Google Scholar]
- Lu P, Prost S, Caldwell H, et al. Microarray analysis of gene expression of mouse hepatocytes of different ploidy. Mamm Genome 2007 ; 18 : 617–626. [CrossRef] [PubMed] [Google Scholar]
- Anatskaya OV, Vinogradov AE. Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver. Genomics 2007 ; 89 : 70–80. [CrossRef] [PubMed] [Google Scholar]
- Miettinen TP, Pessa HK, Caldez MJ, et al. Identification of transcriptional and metabolic programs related to mammalian cell size. Curr Biol 2014 ; 24 : 598–608. [CrossRef] [PubMed] [Google Scholar]
- Gupta S.. Hepatic polyploidy and liver growth control. Semin Cancer Biol 2000 ; 10 : 161–171. [CrossRef] [PubMed] [Google Scholar]
- Desdouets C, Avila MA. Inhibiting cytokinesis in the liver: A new way to reduce tumor development. Gastroenterology 2018 ; 154 : 1229–1231. [CrossRef] [PubMed] [Google Scholar]
- Yang XM, Cao XY, He P, et al. Overexpression of Rac GTPase activating protein 1 contributes to proliferation of cancer cells by reducing Hippo signaling to promote cytokinesis. Gastroenterology 2018 ; 155 : 1233–49 e22. [PubMed] [Google Scholar]
- Zhang S, Nguyen LH, Zhou K, et al. Knockdown of anillin actin binding protein blocks cytokinesis in hepatocytes and reduces liver tumor development in mice without affecting regeneration. Gastroenterology 2018 ; 154 : 1421–1434. [CrossRef] [PubMed] [Google Scholar]
- Gentric G, Desdouets C. Liver polyploidy: Dr Jekyll or Mr Hyde?. Oncotarget 2015 ; 6 : 8430–8431. [CrossRef] [PubMed] [Google Scholar]
- Gentric G, Maillet V, Paradis V, et al. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. J Clin Invest 2015 ; 125 : 981–992. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.