Open Access
Numéro |
Med Sci (Paris)
Volume 35, Numéro 6-7, Juin-Juillet 2019
|
|
---|---|---|
Page(s) | 527 - 534 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2019095 | |
Publié en ligne | 5 juillet 2019 |
- Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol 2015 ; 7 : a016246. [Google Scholar]
- Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013 ; 339 : 786–791. [Google Scholar]
- Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 2016 ; 17 : 1142–1149. [CrossRef] [PubMed] [Google Scholar]
- Crow YJ, Manel N. AicardiGoutières syndrome and the type I interferonopathies. Nat Rev Immunol 2015 ; 15 : 429–440. [CrossRef] [PubMed] [Google Scholar]
- Schreiber RD, Old LJ, Smyth MJ. Cancer Immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011 ; 331 : 1565–1570. [Google Scholar]
- Xu MM, Pu Y, Han D, et al. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity 2017 ; 47 : 363–73.e5. [CrossRef] [PubMed] [Google Scholar]
- Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type i interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014 ; 41 : 843–852. [CrossRef] [PubMed] [Google Scholar]
- Klarquist J, Hennies CM, Lehn MA, et al. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J Immunol 2014 ; 193 : 6124–6134. [CrossRef] [PubMed] [Google Scholar]
- Woo S-R, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014 ; 41 : 830–842. [CrossRef] [PubMed] [Google Scholar]
- Wang H, Hu S, Chen X, et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci USA 2017 ; 114 : 1637–1642. [CrossRef] [Google Scholar]
- Li T, Cheng H, Yuan H, et al. Antitumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response. Sci Rep 2016 ; 6 : 19049. [CrossRef] [PubMed] [Google Scholar]
- Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 2015 ; 11 : 1018–1030. [CrossRef] [PubMed] [Google Scholar]
- Swanson KV, Junkins RD, Kurkjian CJ, et al. A noncanonical function of cGAMP in inflammasome priming and activation. J Exp Med 2017 ; 214 : 3611–3626. [CrossRef] [PubMed] [Google Scholar]
- Harding SM, Benci JL, Irianto J, et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 2017 ; 548 : 466–470. [CrossRef] [PubMed] [Google Scholar]
- Torralba D, Baixauli F, Villarroya-Beltri C, et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun 2018 ; 9 : 2658. [CrossRef] [PubMed] [Google Scholar]
- Sisquella X, Ofir-Birin Y, Pimentel MA, et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat Commun 2017 ; 8 : 1985. [CrossRef] [PubMed] [Google Scholar]
- Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem 2016 ; 74 : 103–141. [CrossRef] [PubMed] [Google Scholar]
- Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]
- Burnette BC, Liang H, Lee Y, et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res 2011 ; 71 : 2488–2496. [Google Scholar]
- Pauli W, Valkó E. Zur Elektrochemie der Kolloide. Kolloid-Zeitschrift 1934 ; 66 : 312–316. [Google Scholar]
- Pépin G, Nejad C, Thomas BJ, et al. Activation of cGAS-dependent antiviral responses by DNA intercalating agents. Nucleic Acids Res 2017 ; 45 : 198–205. [CrossRef] [PubMed] [Google Scholar]
- Wilkins AC, Patin EC, Harrington KJ, et al. The immunological consequences of radiation induced DNA damage. J Pathol 2019 ; 247 : 606–614. [CrossRef] [PubMed] [Google Scholar]
- Härtlova A, Erttmann SF, Raffi FA, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 2015 ; 42 : 332–343. [CrossRef] [PubMed] [Google Scholar]
- Quek H, Luff J, Cheung K, et al. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage. J Leukoc Biol 2017 ; 101 : 927–947. [Google Scholar]
- Wolf C, Rapp A, Berndt N, et al. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. Nat Commun 2016 ; 7 : 11752. [CrossRef] [PubMed] [Google Scholar]
- Dunphy G, Flannery SM, Almine JF, et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol Cell 2018 ; 71 : 745–60.e5. [CrossRef] [PubMed] [Google Scholar]
- Ho SSW, Zhang WYL, Tan NYJ, et al. The DNA structure-specific endonuclease MUS81 mediates DNA sensor STING-dependent host rejection of prostate cancer cells. Immunity 2016 ; 44 : 1177–1189. [CrossRef] [PubMed] [Google Scholar]
- Parkes EE, Walker SM, Taggart LE, et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J Natl Cancer Inst 2017; 109 : djw199. [Google Scholar]
- Erdal E, Haider S, Rehwinkel J, et al. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev 2017 ; 31 : 353–369. [CrossRef] [PubMed] [Google Scholar]
- Carroll EC, Jin L, Mori A, et al. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 2016 ; 44 : 597–608. [CrossRef] [PubMed] [Google Scholar]
- West AP, Khoury-Hanold W, Staron M, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015 ; 520 : 553–557. [CrossRef] [PubMed] [Google Scholar]
- Wang CJ, Lam W, Bussom S, et al. TREX1 acts in degrading damaged DNA from drug-treated tumor cells. DNA Repair (Amst) 2009 ; 8 : 1179. [CrossRef] [PubMed] [Google Scholar]
- Gehrke N, Mertens C, Zillinger T, et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 2013 ; 39 : 482–495. [CrossRef] [PubMed] [Google Scholar]
- Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 2017 ; 8 : 15618. [Google Scholar]
- Chen Y-A, Shen Y-L, Hsia H-Y, et al. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nat Struct Mol Biol 2017 ; 24 : 1124–1131. [CrossRef] [PubMed] [Google Scholar]
- Mackenzie KJ, Carroll P, Martin CA, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 2017 ; 548 : 461–465. [CrossRef] [PubMed] [Google Scholar]
- Fenech M, Kirsch-Volders M, Natarajan AT, et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 2011 ; 26 : 125–132. [CrossRef] [PubMed] [Google Scholar]
- Mackenzie KJ, Carroll P, Lettice L, et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J 2016 ; 35 : 831–844. [CrossRef] [PubMed] [Google Scholar]
- Glück S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 2017 ; 19 : 1061–1070. [CrossRef] [PubMed] [Google Scholar]
- Dou Z, Ghosh K, Vizioli MG, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 2017 ; 550 : 402–406. [CrossRef] [PubMed] [Google Scholar]
- Yang H, Wang H, Ren J, et al. cGAS is essential for cellular senescence. Proc Natl Acad Sci USA 2017 ; 114 : E4612–E4620. [CrossRef] [Google Scholar]
- Cerboni S, Jeremiah N, Gentili M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med 2017 ; 214 : 1769–1785. [CrossRef] [PubMed] [Google Scholar]
- Gulen MF, Koch U, Haag SM, et al. Signalling strength determines proapoptotic functions of STING. Nat Commun 2017 ; 8 : 427. [CrossRef] [PubMed] [Google Scholar]
- Gasser S, Orsulic S, Brown EJ, et al. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005 ; 436 : 1186–1190. [CrossRef] [PubMed] [Google Scholar]
- Lam AR, Le Bert N, Ho SSW, et al. RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma. Cancer Res 2014 ; 74 : 2193–2203. [Google Scholar]
- Ahn J, Xia T, Konno H, et al. Inflammation-driven carcinogenesis is mediated through STING. Nat Commun 2014 ; 5 : 5166. [CrossRef] [PubMed] [Google Scholar]
- Liu H, Zhang H, Wu X, et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 2018 ; 563 : 131–136. [CrossRef] [PubMed] [Google Scholar]
- Bakhoum SF, Ngo B, Laughney AM, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 2018 ; 553 : 467–472. [CrossRef] [PubMed] [Google Scholar]
- Chen Q, Boire A, Jin X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 2016 ; 533 : 493–498. [CrossRef] [PubMed] [Google Scholar]
- Baird JR, Friedman D, Cottam B, et al. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res 2016 ; 76 : 50–61. [Google Scholar]
- Gentili M, Kowal J, Tkach M, et al. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 2015 ; 349 : 1232–1236. [Google Scholar]
- Xia T, Konno H, Barber GN. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res 2016 ; 76 : 6747–6759. [Google Scholar]
- Xia T, Konno H, Ahn J, et al. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep 2016 ; 14 : 282–297. [CrossRef] [PubMed] [Google Scholar]
- Wu MZ, Cheng WC, Chen SF, et al. miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol 2017 ; 19 : 1286–1296. [CrossRef] [PubMed] [Google Scholar]
- Lau L, Gray EE, Brunette RL, et al. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 2015 ; 350 : 568–571. [Google Scholar]
- Lebon P, Crow YJ, Casanova JL, Gresser I. Conséquences pathologiques d’un excès d’interféron in vivo. Comment ne pas sous- estimer des expériences in vivo quand elles peuvent paraître anecdotiques et non conformistes. Med Sci (Paris) 2019 ; 35 : 232–235. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.