Open Access
Med Sci (Paris)
Volume 35, Number 6-7, Juin-Juillet 2019
Page(s) 535 - 543
Section M/S Revues
Published online 05 July 2019
  1. Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science 1993 ; 260 : 812–816. [Google Scholar]
  2. Duval A, Hamelin R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 2002 ; 62 : 2447–2454. [Google Scholar]
  3. Peltomaki P, Vasen H. Mutations associated with HNPCC predisposition: update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 2004 ; 20 : 269–276. [CrossRef] [PubMed] [Google Scholar]
  4. Colas C, Coulet F, Svrcek M, et al. Lynch or not Lynch? Is that always a question?. Adv Cancer Res 2012 ; 113 : 121–166. [CrossRef] [PubMed] [Google Scholar]
  5. Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 2016 ; 22 : 1342–1350. [CrossRef] [PubMed] [Google Scholar]
  6. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015 ; 372 : 2509–2520. [Google Scholar]
  7. Suraweera N, Duval A, Reperant M, et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 2002 ; 123 : 1804–1811. [CrossRef] [PubMed] [Google Scholar]
  8. Buhard O, Suraweera N, Lectard A, et al. Quasimonomorphic mononucleotide repeats for high-level microsatellite instability analysis. Dis Markers 2004 ; 20 : 251–257. [CrossRef] [PubMed] [Google Scholar]
  9. Buhard O, Lagrange A, Guilloux A, et al. HSP110 T17 simplifies and improves the microsatellite instability testing in patients with colorectal cancer. J Med Genet 2016 ; 53 : 377–384. [CrossRef] [PubMed] [Google Scholar]
  10. Bodo S, Colas C, Buhard O, et al. Diagnosis of constitutional mismatch repair-deficiency syndrome based on microsatellite instability and lymphocyte tolerance to methylating agents. Gastroenterology 2015 ; 149 : 1017–29 e3. [Google Scholar]
  11. Canard G, Lefevre JH, Colas C, et al. Screening for Lynch syndrome in colorectal cancer: are we doing enough?. Ann Surg Oncol 2012 ; 19 : 809–816. [CrossRef] [PubMed] [Google Scholar]
  12. Svrcek M, El-Bchiri J, Chalastanis A, et al. Specific clinical and biological features characterize inflammatory bowel disease associated colorectal cancers showing microsatellite instability. J Clin Oncol 2007 ; 25 : 4231–4238. [CrossRef] [PubMed] [Google Scholar]
  13. Svrcek M, Buhard O, Colas C, et al. Methylation tolerance due to an O6-methylguanine DNA methyltransferase (MGMT) field defect in the colonic mucosa: an initiating step in the development of mismatch repair-deficient colorectal cancers. Gut 2010 ; 59 : 1516–1526. [CrossRef] [PubMed] [Google Scholar]
  14. Chalastanis A, Penard-Lacronique V, Svrcek M, et al. Azathioprine-induced carcinogenesis in mice according to Msh2 genotype. J Natl Cancer Inst 2010 ; 102 : 1731–1740. [CrossRef] [PubMed] [Google Scholar]
  15. Duval A, Raphael M, Brennetot C, et al. The mutator pathway is a feature of immunodeficiency-related lymphomas. Proc Natl Acad Sci USA 2004 ; 101 : 5002–5007. [CrossRef] [Google Scholar]
  16. Borie C, Colas C, Dartigues P, et al. The mechanisms underlying MMR deficiency in immunodeficiency-related non-Hodgkin lymphomas are different from those in other sporadic microsatellite instable neoplasms. Int J Cancer 2009 ; 125 : 2360–2366. [CrossRef] [PubMed] [Google Scholar]
  17. Beaugerie L, Svrcek M, Seksik P, et al. Risk of colorectal high-grade dysplasia and cancer in a prospective observational cohort of patients with inflammatory bowel disease. Gastroenterology 2013; 145 : 166–75e8. [CrossRef] [PubMed] [Google Scholar]
  18. Bodo S, Svrcek M, Sourrouille I, et al. Azathioprine induction of tumors with microsatellite instability: risk evaluation using a mouse model. Oncotarget 2015 ; 6 : 24969–24977. [CrossRef] [PubMed] [Google Scholar]
  19. Duval A, Reperant M, Compoint A, et al. Target gene mutation profile differs between gastrointestinal and endometrial tumors with mismatch repair deficiency. Cancer Res 2002 ; 62 : 1609–1612. [Google Scholar]
  20. Hamelin R, Chalastanis A, Colas C, et al. Clinical and molecular consequences of microsatellite instability in human cancers. Bull Cancer 2008 ; 95 : 121–132. [PubMed] [Google Scholar]
  21. Oliveira C, Pinto M, Duval A, et al. BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency. Oncogene 2003 ; 22 : 9192–9196. [Google Scholar]
  22. Duval A, Iacopetta B, Thorstensen L, et al. Gender difference for mismatch repair deficiency in human colorectal cancer. Gastroenterology 2001 ; 121 : 1026–1027. [CrossRef] [PubMed] [Google Scholar]
  23. El-Bchiri J, Buhard O, Penard-Lacronique V, et al. Differential nonsense mediated decay of mutated mRNAs in mismatch repair deficient colorectal cancers. Hum Mol Genet 2005 ; 14 : 2435–2442. [CrossRef] [PubMed] [Google Scholar]
  24. El-Bchiri J, Guilloux A, Dartigues P, et al. Nonsense-mediated mRNA decay impacts MSI-driven carcinogenesis and anti-tumor immunity in colorectal cancers. PloS One 2008 ; 3 : e2583. [CrossRef] [PubMed] [Google Scholar]
  25. Kim TM, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 2013 ; 155 : 858–868. [CrossRef] [PubMed] [Google Scholar]
  26. Jonchere V, Marisa L, Greene M, et al. Identification of positively and negatively selected driver gene mutations associated with colorectal cancer with microsatellite instability. Cell Mol Gastroenterol Hepatol 2018 ; 6 : 277–300. [Google Scholar]
  27. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer; 5 : 761–72. [Google Scholar]
  28. Yoshino I, Goedegebuure PS, Peoples GE, et al. Human tumor-infiltrating CD4+ T cells react to B cell lines expressing heat shock protein 70. J Immunol 1994 ; 153 : 4149–4158. [PubMed] [Google Scholar]
  29. Dorard C, de Thonel A, Collura A, et al. Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med 2011 ; 17 : 1283–1289. [CrossRef] [PubMed] [Google Scholar]
  30. Collura A, Lagrange A, Svrcek M, et al. Patients with colorectal tumors with microsatellite instability and large deletions in HSP110 T17 have improved response to 5-fluorouracil-based chemotherapy. Gastroenterology 2014; 146 : 401–11e1. [CrossRef] [PubMed] [Google Scholar]
  31. Berthenet K, Bokhari A, Lagrange A, et al. HSP110 promotes colorectal cancer growth through STAT3 activation. Oncogene 2017 ; 36 : 2328–2336. [Google Scholar]
  32. Sargent DJ, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010 ; 28 : 3219–3226. [CrossRef] [PubMed] [Google Scholar]
  33. Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 2000 ; 342 : 69–77. [Google Scholar]
  34. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005 ; 23 : 609–618. [CrossRef] [PubMed] [Google Scholar]
  35. Andre T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 2004 ; 350 : 2343–2351. [Google Scholar]
  36. Elsaleh H, Joseph D, Grieu F, et al. Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet 2000 ; 355 : 1745–1750. [CrossRef] [PubMed] [Google Scholar]
  37. Zaanan A, Costes L, Gauthier M, et al. Chemotherapy of advanced small-bowel adenocarcinoma: a multicenter AGEO study. Ann Oncol 2010 ; 21 : 1786–1793. [CrossRef] [PubMed] [Google Scholar]
  38. Tougeron D, Mouillet G, Trouilloud I, et al. Efficacy of adjuvant chemotherapy in colon cancer with microsatellite instability: A large multicenter AGEO study. J Natl Cancer Inst 2016; 108. doi: 10.1093/jnci/djv438. [Google Scholar]
  39. Tougeron D, Sickersen G, Mouillet G, et al. Predictors of disease-free survival in colorectal cancer with microsatellite instability: An AGEO multicentre study. Eur J Cancer 2015 ; 51 : 925–934. [CrossRef] [PubMed] [Google Scholar]
  40. Venderbosch S, Nagtegaal ID, Maughan TS, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res 2014 ; 20 : 5322–5330. [CrossRef] [PubMed] [Google Scholar]
  41. Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 2018 ; 36 : 773–779. [CrossRef] [PubMed] [Google Scholar]
  42. Cohen R, Hain E, Buhard O, et al. Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status. JAMA Oncol 2018; Nov 15. doi: 10.1001/jamaoncol.2018.4942. [Google Scholar]
  43. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012 ; 12 : 298–306. [Google Scholar]
  44. Bokhari A, Jonchere V, Lagrange A, et al. Targeting nonsense-mediated mRNA decay in colorectal cancers with microsatellite instability. Oncogenesis 2018 ; 7 : 70. [CrossRef] [PubMed] [Google Scholar]
  45. Maby P, Tougeron D, Hamieh M, et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy. Cancer Res 2015 ; 75 : 3446–3455. [Google Scholar]
  46. Mlecnik B, Bindea G, Angell HK, et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 2016 ; 44 : 698–711. [CrossRef] [PubMed] [Google Scholar]
  47. Marisa L, Svrcek M, Collura A, et al. The balance between cytotoxic T-cell lymphocytes and immune checkpoint expression in the prognosis of colon tumors. J Natl Cancer Inst 2018 ; 01 1 : 110.10.1093/jnci/djx136 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.