Open Access
Issue
Med Sci (Paris)
Volume 35, Number 6-7, Juin-Juillet 2019
Page(s) 527 - 534
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019095
Published online 05 July 2019
  1. Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol 2015 ; 7 : a016246. [CrossRef] [Google Scholar]
  2. Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013 ; 339 : 786–791. [CrossRef] [Google Scholar]
  3. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 2016 ; 17 : 1142–1149. [CrossRef] [PubMed] [Google Scholar]
  4. Crow YJ, Manel N. Aicardi–Goutières syndrome and the type I interferonopathies. Nat Rev Immunol 2015 ; 15 : 429–440. [CrossRef] [PubMed] [Google Scholar]
  5. Schreiber RD, Old LJ, Smyth MJ. Cancer Immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011 ; 331 : 1565–1570. [CrossRef] [PubMed] [Google Scholar]
  6. Xu MM, Pu Y, Han D, et al. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity 2017 ; 47 : 363–73.e5. [CrossRef] [PubMed] [Google Scholar]
  7. Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type i interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014 ; 41 : 843–852. [CrossRef] [PubMed] [Google Scholar]
  8. Klarquist J, Hennies CM, Lehn MA, et al. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J Immunol 2014 ; 193 : 6124–6134. [CrossRef] [PubMed] [Google Scholar]
  9. Woo S-R, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014 ; 41 : 830–842. [CrossRef] [PubMed] [Google Scholar]
  10. Wang H, Hu S, Chen X, et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc Natl Acad Sci USA 2017 ; 114 : 1637–1642. [CrossRef] [Google Scholar]
  11. Li T, Cheng H, Yuan H, et al. Antitumor activity of cGAMP via stimulation of cGAS-cGAMP-STING-IRF3 mediated innate immune response. Sci Rep 2016 ; 6 : 19049. [CrossRef] [PubMed] [Google Scholar]
  12. Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 2015 ; 11 : 1018–1030. [CrossRef] [PubMed] [Google Scholar]
  13. Swanson KV, Junkins RD, Kurkjian CJ, et al. A noncanonical function of cGAMP in inflammasome priming and activation. J Exp Med 2017 ; 214 : 3611–3626. [CrossRef] [PubMed] [Google Scholar]
  14. Harding SM, Benci JL, Irianto J, et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 2017 ; 548 : 466–470. [CrossRef] [PubMed] [Google Scholar]
  15. Torralba D, Baixauli F, Villarroya-Beltri C, et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun 2018 ; 9 : 2658. [CrossRef] [PubMed] [Google Scholar]
  16. Sisquella X, Ofir-Birin Y, Pimentel MA, et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat Commun 2017 ; 8 : 1985. [CrossRef] [PubMed] [Google Scholar]
  17. Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem 2016 ; 74 : 103–141. [CrossRef] [PubMed] [Google Scholar]
  18. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]
  19. Burnette BC, Liang H, Lee Y, et al. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res 2011 ; 71 : 2488–2496. [CrossRef] [Google Scholar]
  20. Pauli W, Valkó E. Zur Elektrochemie der Kolloide. Kolloid-Zeitschrift 1934 ; 66 : 312–316. [Google Scholar]
  21. Pépin G, Nejad C, Thomas BJ, et al. Activation of cGAS-dependent antiviral responses by DNA intercalating agents. Nucleic Acids Res 2017 ; 45 : 198–205. [CrossRef] [PubMed] [Google Scholar]
  22. Wilkins AC, Patin EC, Harrington KJ, et al. The immunological consequences of radiation induced DNA damage. J Pathol 2019 ; 247 : 606–614. [CrossRef] [PubMed] [Google Scholar]
  23. Härtlova A, Erttmann SF, Raffi FA, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 2015 ; 42 : 332–343. [CrossRef] [PubMed] [Google Scholar]
  24. Quek H, Luff J, Cheung K, et al. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage. J Leukoc Biol 2017 ; 101 : 927–947. [CrossRef] [Google Scholar]
  25. Wolf C, Rapp A, Berndt N, et al. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA. Nat Commun 2016 ; 7 : 11752. [CrossRef] [PubMed] [Google Scholar]
  26. Dunphy G, Flannery SM, Almine JF, et al. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol Cell 2018 ; 71 : 745–60.e5. [CrossRef] [PubMed] [Google Scholar]
  27. Ho SSW, Zhang WYL, Tan NYJ, et al. The DNA structure-specific endonuclease MUS81 mediates DNA sensor STING-dependent host rejection of prostate cancer cells. Immunity 2016 ; 44 : 1177–1189. [CrossRef] [PubMed] [Google Scholar]
  28. Parkes EE, Walker SM, Taggart LE, et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J Natl Cancer Inst 2017; 109 : djw199. [CrossRef] [Google Scholar]
  29. Erdal E, Haider S, Rehwinkel J, et al. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev 2017 ; 31 : 353–369. [CrossRef] [PubMed] [Google Scholar]
  30. Carroll EC, Jin L, Mori A, et al. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 2016 ; 44 : 597–608. [CrossRef] [PubMed] [Google Scholar]
  31. West AP, Khoury-Hanold W, Staron M, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015 ; 520 : 553–557. [CrossRef] [PubMed] [Google Scholar]
  32. Wang CJ, Lam W, Bussom S, et al. TREX1 acts in degrading damaged DNA from drug-treated tumor cells. DNA Repair (Amst) 2009 ; 8 : 1179. [CrossRef] [PubMed] [Google Scholar]
  33. Gehrke N, Mertens C, Zillinger T, et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 2013 ; 39 : 482–495. [CrossRef] [PubMed] [Google Scholar]
  34. Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 2017 ; 8 : 15618. [CrossRef] [PubMed] [Google Scholar]
  35. Chen Y-A, Shen Y-L, Hsia H-Y, et al. Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway. Nat Struct Mol Biol 2017 ; 24 : 1124–1131. [CrossRef] [PubMed] [Google Scholar]
  36. Mackenzie KJ, Carroll P, Martin CA, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 2017 ; 548 : 461–465. [CrossRef] [PubMed] [Google Scholar]
  37. Fenech M, Kirsch-Volders M, Natarajan AT, et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 2011 ; 26 : 125–132. [CrossRef] [PubMed] [Google Scholar]
  38. Mackenzie KJ, Carroll P, Lettice L, et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J 2016 ; 35 : 831–844. [CrossRef] [Google Scholar]
  39. Glück S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 2017 ; 19 : 1061–1070. [CrossRef] [PubMed] [Google Scholar]
  40. Dou Z, Ghosh K, Vizioli MG, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 2017 ; 550 : 402–406. [CrossRef] [PubMed] [Google Scholar]
  41. Yang H, Wang H, Ren J, et al. cGAS is essential for cellular senescence. Proc Natl Acad Sci USA 2017 ; 114 : E4612–E4620. [CrossRef] [Google Scholar]
  42. Cerboni S, Jeremiah N, Gentili M, et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J Exp Med 2017 ; 214 : 1769–1785. [CrossRef] [PubMed] [Google Scholar]
  43. Gulen MF, Koch U, Haag SM, et al. Signalling strength determines proapoptotic functions of STING. Nat Commun 2017 ; 8 : 427. [CrossRef] [PubMed] [Google Scholar]
  44. Gasser S, Orsulic S, Brown EJ, et al. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005 ; 436 : 1186–1190. [CrossRef] [PubMed] [Google Scholar]
  45. Lam AR, Le Bert N, Ho SSW, et al. RAE1 ligands for the NKG2D receptor are regulated by STING-dependent DNA sensor pathways in lymphoma. Cancer Res 2014 ; 74 : 2193–2203. [CrossRef] [Google Scholar]
  46. Ahn J, Xia T, Konno H, et al. Inflammation-driven carcinogenesis is mediated through STING. Nat Commun 2014 ; 5 : 5166. [CrossRef] [PubMed] [Google Scholar]
  47. Liu H, Zhang H, Wu X, et al. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 2018 ; 563 : 131–136. [CrossRef] [PubMed] [Google Scholar]
  48. Bakhoum SF, Ngo B, Laughney AM, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 2018 ; 553 : 467–472. [CrossRef] [PubMed] [Google Scholar]
  49. Chen Q, Boire A, Jin X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 2016 ; 533 : 493–498. [CrossRef] [PubMed] [Google Scholar]
  50. Baird JR, Friedman D, Cottam B, et al. Radiotherapy combined with novel STING-targeting oligonucleotides results in regression of established tumors. Cancer Res 2016 ; 76 : 50–61. [CrossRef] [Google Scholar]
  51. Gentili M, Kowal J, Tkach M, et al. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 2015 ; 349 : 1232–1236. [CrossRef] [PubMed] [Google Scholar]
  52. Xia T, Konno H, Barber GN. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res 2016 ; 76 : 6747–6759. [CrossRef] [Google Scholar]
  53. Xia T, Konno H, Ahn J, et al. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep 2016 ; 14 : 282–297. [CrossRef] [PubMed] [Google Scholar]
  54. Wu MZ, Cheng WC, Chen SF, et al. miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol 2017 ; 19 : 1286–1296. [CrossRef] [PubMed] [Google Scholar]
  55. Lau L, Gray EE, Brunette RL, et al. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 2015 ; 350 : 568–571. [CrossRef] [Google Scholar]
  56. Lebon P, Crow YJ, Casanova JL, Gresser I. Conséquences pathologiques d’un excès d’interféron in vivo. Comment ne pas sous- estimer des expériences in vivo quand elles peuvent paraître anecdotiques et non conformistes. Med Sci (Paris) 2019 ; 35 : 232–235. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.