Open Access
Med Sci (Paris)
Volume 35, Number 5, Mai 2019
Page(s) 440 - 451
Section M/S Revues
Published online 22 May 2019
  1. Baekkevold ES, Roussigne M, Yamanaka T, et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol. 2003 ; 163 : 69–79. [CrossRef] [PubMed] [Google Scholar]
  2. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005 ; 23 : 479–490. [CrossRef] [PubMed] [Google Scholar]
  3. Lingel A, Weiss TM, Niebuhr M, et al. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors: insight into heterotrimeric IL-1 signaling complexes. Structure. 2009 ; 17 : 1398–1410. [CrossRef] [PubMed] [Google Scholar]
  4. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018 ; 281 : 8–27. [CrossRef] [PubMed] [Google Scholar]
  5. Carriere V, Roussel L, Ortega N, et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA. 2007 ; 104 : 282–287. [CrossRef] [Google Scholar]
  6. Roussel L, Erard M, Cayrol C, Girard JP. Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A–H2B acidic pocket. EMBO Rep. 2008 ; 9 : 1006–1012. [Google Scholar]
  7. Lefrancais E, Roga S, Gautier V, et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA. 2012 ; 109 : 1673–1678. [CrossRef] [Google Scholar]
  8. Lefrancais E, Duval A, Mirey E, et al. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc Natl Acad Sci USA. 2014 ; 111 : 15502–15507. [CrossRef] [Google Scholar]
  9. Cayrol C, Duval A, Schmitt P, et al. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nat Immunol. 2018 ; 19 : 375–385. [CrossRef] [PubMed] [Google Scholar]
  10. Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’?. PloS One. 2008 ; 3 : e3331. [CrossRef] [PubMed] [Google Scholar]
  11. Molofsky AB, Savage AK, Locksley RM. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity. 2015 ; 42 : 1005–1019. [CrossRef] [PubMed] [Google Scholar]
  12. Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016 ; 16 : 676–689. [CrossRef] [PubMed] [Google Scholar]
  13. Pichery M, Mirey E, Mercier P, et al. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues : in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J Immunol. 2012 ; 188 : 3488–3495. [CrossRef] [PubMed] [Google Scholar]
  14. Byers DE, Alexander-Brett J, Patel AC, et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J Clin Invest. 2013 ; 123 : 3967–3982. [CrossRef] [PubMed] [Google Scholar]
  15. Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci USA. 2009 ; 106 : 9021–9026. [CrossRef] [Google Scholar]
  16. Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol Rev. 2017 ; 278 : 173–184. [CrossRef] [PubMed] [Google Scholar]
  17. Smith DE. IL-33: a tissue derived cytokine pathway involved in allergic inflammation and asthma. Clin Exp Allerg. 2010 ; 40 : 200–208. [CrossRef] [Google Scholar]
  18. Crinier A, Viant C, Girard-Madoux M, Vivier E. Les cellules lymphoïdes innées. Med Sci (Paris). 2017 ; 33 : 534–542. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018 ; 281 : 154–168. [CrossRef] [PubMed] [Google Scholar]
  20. Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol. 2016 ; 138 : 666–675. [CrossRef] [PubMed] [Google Scholar]
  21. Hayakawa H, Hayakawa M, Kume A, Tominaga S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem. 2007 ; 282 : 26369–26380. [PubMed] [Google Scholar]
  22. Oboki K, Ohno T, Kajiwara N, et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci USA. 2010 ; 107 : 18581–18586. [CrossRef] [Google Scholar]
  23. Haenuki Y, Matsushita K, Futatsugi-Yumikura S, et al. A critical role of IL-33 in experimental allergic rhinitis. J Allergy Clin Immunol. 2012 ; 130 : 184–94. e11. [CrossRef] [PubMed] [Google Scholar]
  24. Halim TY, Steer CA, Matha L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity. 2014 ; 40 : 425–435. [CrossRef] [PubMed] [Google Scholar]
  25. Lee HY, Rhee CK, Kang JY, et al. Blockade of IL-33/ST2 ameliorates airway inflammation in a murine model of allergic asthma. Exp Lung Res. 2014 ; 40 : 66–76. [CrossRef] [PubMed] [Google Scholar]
  26. Imai Y, Yasuda K, Sakaguchi Y, et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci USA. 2013 ; 110 : 13921–13926. [CrossRef] [Google Scholar]
  27. Han H, Roan F, Ziegler SF. The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol Rev. 2017 ; 278 : 116–130. [CrossRef] [PubMed] [Google Scholar]
  28. Prefontaine D, Nadigel J, Chouiali F, et al. Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin immunol. 2010 ; 125 : 752–754. [CrossRef] [PubMed] [Google Scholar]
  29. Castanhinha S, Sherburn R, Walker S, et al. Pediatric severe asthma with fungal sensitization is mediated by steroid-resistant IL-33. J Allergy Clin immunol. 2015 ; 136 : 312–22. e7. [CrossRef] [PubMed] [Google Scholar]
  30. Bourgeois E, Van LP, Samson M, et al. The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma production. Eur J Immunol Immunol. 2009 ; 39 : 1046–55. [CrossRef] [Google Scholar]
  31. Bonilla WV, Frohlich A, Senn K, et al. The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science. 2012 ; 335 : 984–989. [Google Scholar]
  32. Silver JS, Kearley J, Copenhaver AM, et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol. 2016 ; 17 : 626–635. [CrossRef] [PubMed] [Google Scholar]
  33. Monticelli LA, Sonnenberg GF, Abt MC, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011 ; 12 : 1045–1054. [CrossRef] [PubMed] [Google Scholar]
  34. Arpaia N, Green JA, Moltedo B, et al. A Distinct function of regulatory T cells in tissue protection. Cell. 2015 ; 162 : 1078–1089. [CrossRef] [PubMed] [Google Scholar]
  35. Gieseck RL, 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol. 2018 ; 18 : 62–76. [CrossRef] [PubMed] [Google Scholar]
  36. de Kleer IM, Kool M, de Bruijn MJ, et al. Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity. 2016 ; 45 : 1285–1298. [CrossRef] [PubMed] [Google Scholar]
  37. Saluzzo S, Gorki AD, Rana BMJ, et al. First-breath-induced type 2 pathways shape the lung immune environment. Cell rep. 2017 ; 18 : 1893–1905. [CrossRef] [PubMed] [Google Scholar]
  38. Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat Immunol. 2018 ; 19 : 1093–1099. [CrossRef] [PubMed] [Google Scholar]
  39. Cohen M, Giladi A, Gorki AD, et al. Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell. 2018 ; 175 : 1031–44. e18. [CrossRef] [PubMed] [Google Scholar]
  40. Vasanthakumar A, Moro K, Xin A, et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat Immunol. 2015 ; 16 : 276–285. [CrossRef] [PubMed] [Google Scholar]
  41. Bessa J, Meyer CA, de Vera Mudry MC, et al. Altered subcellular localization of IL-33 leads to non-resolving lethal inflammation. J Autoimmunity. 2014 ; 55 : 33–41. [CrossRef] [Google Scholar]
  42. Gautier V, Cayrol C, Farache D, et al. Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells. Sci Rep. 2016 ; 6 : 34255. [CrossRef] [PubMed] [Google Scholar]
  43. Cohen ES, Scott IC, Majithiya JB, et al. Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation. Nat comm. 2015 ; 6 : 8327. [CrossRef] [Google Scholar]
  44. Moffatt MF, Gut IG, Demenais F, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010 ; 363 : 1211–1221. [Google Scholar]
  45. Cayrol C, Girard JP. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Cur Opin Immunol. 2014 ; 31 : 31–37. [CrossRef] [Google Scholar]
  46. Smith D, Helgason H, Sulem P, et al. A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma. PLoS Genet. 2017 ; 13 : e1006659. [PubMed] [Google Scholar]
  47. Kim YH, Yang TY, Park CS, et al. Anti-IL-33 antibody has a therapeutic effect in a murine model of allergic rhinitis. Allergy. 2012 ; 67 : 183–190. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.