Open Access
Med Sci (Paris)
Volume 35, Number 5, Mai 2019
Page(s) 452 - 461
Section M/S Revues
Published online 22 May 2019
  1. Anderson PW. More is different. Science. 1972 ; 177 : 393–396. [Google Scholar]
  2. Adl SM, Simpson AG, Lane CE, et al. The revised classification of eukaryotes. J Eukaryot Microbiol. 2012 ; 59 : 429–493. [CrossRef] [PubMed] [Google Scholar]
  3. Azimzadeh J, Bornens M Nigg E. The centrosome in evolution. Centrosomes in development and disease. 2004 ; New York: Wiley: 93–121. [Google Scholar]
  4. Yubuki N, Leander BS. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 2013 ; 75 : 230–244. [CrossRef] [PubMed] [Google Scholar]
  5. Moestrup HT. Ultrastructure of the flagellar apparatus in Pyramimonas octopus (Prasinophyceae). II. Flagellar roots, connecting fibres, and numbering of individual flagella in green algae. Protoplasma. 1989 ; 148 : 41–56. [Google Scholar]
  6. Salisbury JL, Baron A, Surek B, Melkonian M. Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle. J Cell Biol. 1984 ; 99 : 962–970. [CrossRef] [PubMed] [Google Scholar]
  7. Ogbadoyi EO, Robinson DR, Gull K. A highorder trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol Biol Cell. 2003 ; 14 : 1769–1779. [CrossRef] [PubMed] [Google Scholar]
  8. Holmes JA, Dutcher SK. Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci. 1989 ; 94 : 273–285. [Google Scholar]
  9. Taniguchi K, Shao Y, Twonshend RF, et al. An apicosome initiates selforganizing morphogenesis of human pluripotent stem cells. J Cell Biol. 2017 ; 216 : 3981–3990. [CrossRef] [PubMed] [Google Scholar]
  10. Sebe-Pedro´s A, Degnan BM, Ruiz-Trillo I. The origin of Metazoa: a unicellular perspective. Nat Rev Genet 2017; 18 : 498–512. [CrossRef] [PubMed] [Google Scholar]
  11. Fritz-Laylin LK, Prochnik SE, Ginger ML, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010 ; 140 : 631–642. [CrossRef] [PubMed] [Google Scholar]
  12. Fritz-Laylin LK, Ginger ML, Walsh C, et al. The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol. 2011 ; 162 : 607–618. [CrossRef] [PubMed] [Google Scholar]
  13. Ginger ML, Portman N, McKean PG. Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol. 2008 ; 6 : 838–850. [CrossRef] [PubMed] [Google Scholar]
  14. Farina F, Gaillard J, Guérin C, et al. The centrosome is an actin organizing centre. Nat Cell Biol. 2016 ; 18 : 65–75. [CrossRef] [PubMed] [Google Scholar]
  15. Bray D. Cell movements: from molecules to motility, 2nd ed. Boca Raton, FL : CRC Press, 2001. [Google Scholar]
  16. Sherrington C.. Man on his nature. 1963 ; Cambridge, UK: Cambridge University Press, [Google Scholar]
  17. Sherwin T, Gull K. Visualization of detyrosination along single microtubules reveals novel mechanisms of assembly during cytoskeletal duplication in trypanosomes. Cell. 1989 ; 57 : 211–221. [CrossRef] [PubMed] [Google Scholar]
  18. Aumeier C, Schaedel L, Gaillard J, et al. Self-repair promotes microtubule rescue. Nat Cell Biol. 2016 ; 18 : 1054–1064. [CrossRef] [PubMed] [Google Scholar]
  19. Buss LW. The evolution of individuality. 1987 ; Princeton, NJ: Princeton University Press, [Google Scholar]
  20. Dettmer J, Friml J. Cell polarity in plants: when two do the same, it is not the same. Curr. Opin Cell Biol. 2011 ; 23 : 686–696. [CrossRef] [PubMed] [Google Scholar]
  21. Hoops HJ. Motility in the colonial and multicellular Vovocales: structure, function and evolution. Protoplasma. 1997 ; 199 : 99–112. [Google Scholar]
  22. Morris NR, Enos AP. Mitotic gold in a mold: Aspergillus genetics and the biology of mitosis. Trends Genet. 1992 ; 8 : 32–37. [CrossRef] [PubMed] [Google Scholar]
  23. Telford MJ, Budd GE, Philippe H. Phylogenomic insights into animal evolution. Curr Biol. 2015 ; 25 : R876–R887. [CrossRef] [PubMed] [Google Scholar]
  24. Mavrakis M, Rikhy R, Lippincott-Schwartz J. Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev Cell. 2009 ; 16 : 93–104. [CrossRef] [PubMed] [Google Scholar]
  25. Mikhailov KV, Konstantinova AV, Nikitin MA, et al. The origin of Metazoa: a transition from temporal to spatial cell differentiation. Bioessays. 2009 ; 31 : 758–768. [CrossRef] [PubMed] [Google Scholar]
  26. Ludeman DA, Farrar N, Riesgo A, et al. Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. BMC Evol Biol. 2014 ; 14 : 3. [CrossRef] [PubMed] [Google Scholar]
  27. Debec A, Sullivan W, Bettencourt-Dias M. Centrioles: active players or passengers during mitosis?. Cell Mol Life Sci. 2010 ; 67 : 2173–2194. [CrossRef] [PubMed] [Google Scholar]
  28. Lambert JD, Nagy LM. Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature. 2002 ; 420 : 682–686. [CrossRef] [PubMed] [Google Scholar]
  29. Elkouby YM, Jamieson-Lucy A, Mullins MC. Oocyte polarization is coupled to the chromosomal bouquet, a conserved polarized nuclear configuration in meiosis. PLoS Biol. 2016 ; 14 : e1002335. [PubMed] [Google Scholar]
  30. Bely AE. Distribution of segment regeneration ability in the Annelida. Integr Comp Biol. 2006 ; 46 : 508–518. [CrossRef] [PubMed] [Google Scholar]
  31. Grohme MA, Schloissnig S, Rozanski A, et al. The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature. 2018 ; 554 : 56–61. [CrossRef] [PubMed] [Google Scholar]
  32. Azimzadeh J, Wong ML, Downhour DM, et al. Centrosome loss in the evolution of planarians. Science. 2012 ; 335 : 461–463. [Google Scholar]
  33. Petersen CP, Reddien PW. Wnt signaling and the polarity of the primary body axis. Cell. 2009 ; 139 : 1056–1068. [CrossRef] [PubMed] [Google Scholar]
  34. Mbom BC, Nelson WJ, Barth A. beta-catenin at the centrosome: discrete pools of b-catenin communicate during mitosis and may co-ordinate centrosome functions and cell cycle progression. Bioessays. 2013 ; 35 : 804–809. [CrossRef] [PubMed] [Google Scholar]
  35. Habib SJ, Chen BC, Tsai FC, et al. A localized Wnt signal orients asymmetric stem cell division in vitro. Science. 2013 ; 339 : 1445–1448. [Google Scholar]
  36. Lapebie P, Borchiellini C, Houliston E. Dissecting the PCP pathway: one or more pathways? Does a separate Wnt-Fz-Rho pathway drive morphogenesis?. Bioessays. 2011 ; 33 : 759–768. [CrossRef] [PubMed] [Google Scholar]
  37. Chavali PL, Pütz M, Gergely F. Small organelle, big responsibility: the role of the centrosome in development and disease. Phil Trans RSoc 2014; B 369: 20150468. [Google Scholar]
  38. Wilsch-Brauninger M, Peters J, Paridaen ML, Huttner WB. Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination. Development. 2012 ; 139 : 95–105. [CrossRef] [PubMed] [Google Scholar]
  39. Jekely G. Origin and early evolution of neural circuits for the control of ciliary locomotion. Proc R Soc 2011; B 278 : 914–22. [CrossRef] [Google Scholar]
  40. Gilpin W, Prakash VN, Prakash M. Vortex arrays and ciliary tangles underlie the feeding-swimming trade-off in starfish karvae. Nat Phys. 2017 ; 13 : 380–386. [Google Scholar]
  41. Bornens M.. Cell polarity: having and making sense of direction: on the evolutionary significance of the primary cilium/ centrosome organ in Metazoa. Open Biol. 2018 ; 8 : 180052.10.1098/rsob.180052 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.