Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 5, Mai 2019
Page(s) 440 - 451
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019078
Publié en ligne 22 mai 2019
  1. Baekkevold ES, Roussigne M, Yamanaka T, et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol. 2003 ; 163 : 69–79. [CrossRef] [PubMed] [Google Scholar]
  2. Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005 ; 23 : 479–490. [CrossRef] [PubMed] [Google Scholar]
  3. Lingel A, Weiss TM, Niebuhr M, et al. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors: insight into heterotrimeric IL-1 signaling complexes. Structure. 2009 ; 17 : 1398–1410. [CrossRef] [PubMed] [Google Scholar]
  4. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018 ; 281 : 8–27. [CrossRef] [PubMed] [Google Scholar]
  5. Carriere V, Roussel L, Ortega N, et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA. 2007 ; 104 : 282–287. [CrossRef] [Google Scholar]
  6. Roussel L, Erard M, Cayrol C, Girard JP. Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A–H2B acidic pocket. EMBO Rep. 2008 ; 9 : 1006–1012. [Google Scholar]
  7. Lefrancais E, Roga S, Gautier V, et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA. 2012 ; 109 : 1673–1678. [CrossRef] [Google Scholar]
  8. Lefrancais E, Duval A, Mirey E, et al. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc Natl Acad Sci USA. 2014 ; 111 : 15502–15507. [CrossRef] [Google Scholar]
  9. Cayrol C, Duval A, Schmitt P, et al. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nat Immunol. 2018 ; 19 : 375–385. [CrossRef] [PubMed] [Google Scholar]
  10. Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’?. PloS One. 2008 ; 3 : e3331. [CrossRef] [PubMed] [Google Scholar]
  11. Molofsky AB, Savage AK, Locksley RM. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity. 2015 ; 42 : 1005–1019. [CrossRef] [PubMed] [Google Scholar]
  12. Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016 ; 16 : 676–689. [CrossRef] [PubMed] [Google Scholar]
  13. Pichery M, Mirey E, Mercier P, et al. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues : in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J Immunol. 2012 ; 188 : 3488–3495. [CrossRef] [PubMed] [Google Scholar]
  14. Byers DE, Alexander-Brett J, Patel AC, et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J Clin Invest. 2013 ; 123 : 3967–3982. [CrossRef] [PubMed] [Google Scholar]
  15. Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci USA. 2009 ; 106 : 9021–9026. [CrossRef] [Google Scholar]
  16. Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol Rev. 2017 ; 278 : 173–184. [CrossRef] [PubMed] [Google Scholar]
  17. Smith DE. IL-33: a tissue derived cytokine pathway involved in allergic inflammation and asthma. Clin Exp Allerg. 2010 ; 40 : 200–208. [CrossRef] [Google Scholar]
  18. Crinier A, Viant C, Girard-Madoux M, Vivier E. Les cellules lymphoïdes innées. Med Sci (Paris). 2017 ; 33 : 534–542. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018 ; 281 : 154–168. [CrossRef] [PubMed] [Google Scholar]
  20. Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol. 2016 ; 138 : 666–675. [CrossRef] [PubMed] [Google Scholar]
  21. Hayakawa H, Hayakawa M, Kume A, Tominaga S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem. 2007 ; 282 : 26369–26380. [PubMed] [Google Scholar]
  22. Oboki K, Ohno T, Kajiwara N, et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci USA. 2010 ; 107 : 18581–18586. [CrossRef] [Google Scholar]
  23. Haenuki Y, Matsushita K, Futatsugi-Yumikura S, et al. A critical role of IL-33 in experimental allergic rhinitis. J Allergy Clin Immunol. 2012 ; 130 : 184–94. e11. [CrossRef] [PubMed] [Google Scholar]
  24. Halim TY, Steer CA, Matha L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity. 2014 ; 40 : 425–435. [CrossRef] [PubMed] [Google Scholar]
  25. Lee HY, Rhee CK, Kang JY, et al. Blockade of IL-33/ST2 ameliorates airway inflammation in a murine model of allergic asthma. Exp Lung Res. 2014 ; 40 : 66–76. [CrossRef] [PubMed] [Google Scholar]
  26. Imai Y, Yasuda K, Sakaguchi Y, et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci USA. 2013 ; 110 : 13921–13926. [CrossRef] [Google Scholar]
  27. Han H, Roan F, Ziegler SF. The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol Rev. 2017 ; 278 : 116–130. [CrossRef] [PubMed] [Google Scholar]
  28. Prefontaine D, Nadigel J, Chouiali F, et al. Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin immunol. 2010 ; 125 : 752–754. [CrossRef] [PubMed] [Google Scholar]
  29. Castanhinha S, Sherburn R, Walker S, et al. Pediatric severe asthma with fungal sensitization is mediated by steroid-resistant IL-33. J Allergy Clin immunol. 2015 ; 136 : 312–22. e7. [CrossRef] [PubMed] [Google Scholar]
  30. Bourgeois E, Van LP, Samson M, et al. The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma production. Eur J Immunol Immunol. 2009 ; 39 : 1046–55. [CrossRef] [Google Scholar]
  31. Bonilla WV, Frohlich A, Senn K, et al. The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science. 2012 ; 335 : 984–989. [Google Scholar]
  32. Silver JS, Kearley J, Copenhaver AM, et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol. 2016 ; 17 : 626–635. [CrossRef] [PubMed] [Google Scholar]
  33. Monticelli LA, Sonnenberg GF, Abt MC, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011 ; 12 : 1045–1054. [CrossRef] [PubMed] [Google Scholar]
  34. Arpaia N, Green JA, Moltedo B, et al. A Distinct function of regulatory T cells in tissue protection. Cell. 2015 ; 162 : 1078–1089. [CrossRef] [PubMed] [Google Scholar]
  35. Gieseck RL, 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol. 2018 ; 18 : 62–76. [CrossRef] [PubMed] [Google Scholar]
  36. de Kleer IM, Kool M, de Bruijn MJ, et al. Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity. 2016 ; 45 : 1285–1298. [CrossRef] [PubMed] [Google Scholar]
  37. Saluzzo S, Gorki AD, Rana BMJ, et al. First-breath-induced type 2 pathways shape the lung immune environment. Cell rep. 2017 ; 18 : 1893–1905. [CrossRef] [PubMed] [Google Scholar]
  38. Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat Immunol. 2018 ; 19 : 1093–1099. [CrossRef] [PubMed] [Google Scholar]
  39. Cohen M, Giladi A, Gorki AD, et al. Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell. 2018 ; 175 : 1031–44. e18. [CrossRef] [PubMed] [Google Scholar]
  40. Vasanthakumar A, Moro K, Xin A, et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat Immunol. 2015 ; 16 : 276–285. [CrossRef] [PubMed] [Google Scholar]
  41. Bessa J, Meyer CA, de Vera Mudry MC, et al. Altered subcellular localization of IL-33 leads to non-resolving lethal inflammation. J Autoimmunity. 2014 ; 55 : 33–41. [CrossRef] [Google Scholar]
  42. Gautier V, Cayrol C, Farache D, et al. Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells. Sci Rep. 2016 ; 6 : 34255. [CrossRef] [PubMed] [Google Scholar]
  43. Cohen ES, Scott IC, Majithiya JB, et al. Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation. Nat comm. 2015 ; 6 : 8327. [CrossRef] [Google Scholar]
  44. Moffatt MF, Gut IG, Demenais F, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010 ; 363 : 1211–1221. [Google Scholar]
  45. Cayrol C, Girard JP. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Cur Opin Immunol. 2014 ; 31 : 31–37. [CrossRef] [Google Scholar]
  46. Smith D, Helgason H, Sulem P, et al. A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma. PLoS Genet. 2017 ; 13 : e1006659. [PubMed] [Google Scholar]
  47. Kim YH, Yang TY, Park CS, et al. Anti-IL-33 antibody has a therapeutic effect in a murine model of allergic rhinitis. Allergy. 2012 ; 67 : 183–190. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.