Open Access
Issue
Med Sci (Paris)
Volume 35, Number 3, Mars 2019
Page(s) 236 - 243
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019036
Published online 01 April 2019
  1. Kanner L.. Autistic disturbances of affective contact. Nervous Child 1943 ; 2 : 217–250. [Google Scholar]
  2. Guibert C, Beaud L. Différence entre autisme de Kanner et psychose infantile : déficits d’unité vs d’identité de la situation ?. Psychiatrie de l’Enfant 2005 ; 48 : 391–423. [CrossRef] [Google Scholar]
  3. Wing L, Gould J. Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J Autism Dev Disord 1979 ; 9 : 11–29. [Google Scholar]
  4. DSM-III. Diagnostic and statistical manual of mental disorders, 3e ed. Washington DC : American Psychiatric Association, 1980. [Google Scholar]
  5. DSM-V. Diagnostic and statistical manual of mental disorders, 5e ed. Washington DC : American Psychiatric Association, 2013. [Google Scholar]
  6. Bourgeron T.. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 2015 ; 16 : 551–563. [CrossRef] [PubMed] [Google Scholar]
  7. Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry 2014 ; 4 : e360. [CrossRef] [PubMed] [Google Scholar]
  8. Tran NQV, Miyake K. Neurodevelopmental disorders and environmental toxicants: epigenetics as an underlying mechanism. Int J Genomics 2017 ; 2017 : 7526592. [Google Scholar]
  9. Amiet C.. Diversité clinique de l’autisme : aspects diagnostiques. Perspectives Psy 2007 ; 46 : 228–239. [CrossRef] [EDP Sciences] [Google Scholar]
  10. Ha S, Sohn IJ, Kim N, et al. Characteristics of brains in autism spectrum disorder: Structure, function and connectivity across the lifespan. Exp Neurobiol 2015 ; 24 : 273–284. [Google Scholar]
  11. Herrington JD, Maddox BB, Kerns CM, et al. Amygdala volume differences in autism spectrum disorder are related to anxiety. J Autism Dev Disord 2017 ; 47 : 3682–3691. [Google Scholar]
  12. Langen L, Bos D, Noordermeer SD, et al. Changes in the development of striatum are involved in repetitive behavior in autism. Biol Psychiatry 2014 ; 76 : 405–411. [CrossRef] [PubMed] [Google Scholar]
  13. Donovan AP, Basson M. The neuroanatomy of autism: a developmental perspective. J Anat 2017 ; 230 : 4–15. [Google Scholar]
  14. Roux S, Bossu JL. Le cervelet : des troubles moteurs à l’autisme. Rev Neuropsychol 2016 ; 8 : 182–191. [Google Scholar]
  15. Hull JV, Dokovna LB, Jacokes ZJ, et al. Resting-state functional connectivity in autism spectrum disorders: a review. Front Psychiatry 2017 ; 7 : 205. [CrossRef] [PubMed] [Google Scholar]
  16. Varghese M, Keshav N, Jacot-Descombes S, et al. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol 2017 ; 134 : 537–566. [CrossRef] [PubMed] [Google Scholar]
  17. Christensen J, Grønborg TK, Sørensen MJ, et al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 2013 ; 309 : 1696–1703. [CrossRef] [PubMed] [Google Scholar]
  18. Rodier PM, Ingram JL, Tisdale B, et al. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 1996 ; 370 : 247–261. [CrossRef] [PubMed] [Google Scholar]
  19. Roux S, Bossu JL. Valproic acid and autism spectrum disorder: from clinical observations to animal studies. Curr Trends Neurol 2017 ; 11 : 53–61. [Google Scholar]
  20. Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol 2018 ; 299 : 217–227. [CrossRef] [PubMed] [Google Scholar]
  21. Deckmann I, Schwingel GB, Fontes-Dutra M, et al. Neuroimmune alterations in autism: a translational analysis focusing on the animal model of autism induced by prenatal exposure to valproic acid. Neuroimmunomodulation 2018 ; 29 : 1–15. [Google Scholar]
  22. Yamaguchi H, Hara Y, Ago Y, et al. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice. Behav Brain Res 2017 ; 333 : 67–73. [CrossRef] [PubMed] [Google Scholar]
  23. Kataoka S, Takuma K, Hara Y, et al. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int J Neuropsychopharmacol 2013 ; 16 : 91–103. [CrossRef] [PubMed] [Google Scholar]
  24. Howell BW, Smith KM. Synaptic structural protein dysfunction leads to altered excitation inhibition ratios in models of autism spectrum disorder. Pharmacol Res 2018 ; 139 : 207–214. [CrossRef] [PubMed] [Google Scholar]
  25. Roux S, Bailly Y, Bossu JL. Regional and sex-dependent alterations in Purkinje cell density in the valproate mouse model of autism. Neuroreport 2019 ; 30 : 82–88. [CrossRef] [PubMed] [Google Scholar]
  26. Al Sagheer T, Haida O, Balbous A, et al. Motor impairments correlate with social deficits and restricted neuronal loss in an environmental model of autism. Int J Neuropsychopharmacol 2018; 21 : 871–82. [CrossRef] [PubMed] [Google Scholar]
  27. Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2003 ; 2 : 255–267. [PubMed] [Google Scholar]
  28. Ben-Ari Y.. The GABA excitatory/inhibitory developmental sequence: a personal journey. Neurosci 2014 ; 279 : 187–219. [CrossRef] [Google Scholar]
  29. Tyzio R, Nardou R, Ferrari DC, et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 2014 ; 343 : 675–679. [Google Scholar]
  30. Roux S, Lohof A, Ben-Ari Y, et al. Maturation of GABAergic transmission in cerebellar Purkinje Cells is sex dependent and altered in the valproate model of autism. Front Cell Neurosci 2018 ; 12 : 232. [Google Scholar]
  31. Markram K, Markram H. The intense world theory: a unifying theory of the neurobiology of autism. Front Hum Neurosci 2010 ; 4 : 224. [CrossRef] [PubMed] [Google Scholar]
  32. Lemonnier E, Villeneuve N, Sonie S, et al. Effects of bumetanide on neurobehavioral function in children and adolescents with autism spectrum disorders. Transl Psychiatry 2017 ; 7 : e1056. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.