Open Access
Issue
Med Sci (Paris)
Volume 35, Number 3, Mars 2019
Page(s) 232 - 235
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019037
Published online 01 April 2019
  1. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957 ; 147 : 258–267. [CrossRef] [PubMed] [Google Scholar]
  2. Isaacs A, Hitchchok G. Role of interferon in recovery from virus infections. Lancet 1960 ; 2 : 69–71. [CrossRef] [PubMed] [Google Scholar]
  3. Virelizier JL, Gresser I. Role of interferon in the pathogenesis of viral diseases of mice as demonstrated by the use of anti-interferon serum. V. Protective role in mouse hepatitis virus type 3 infection of susceptible and resistant strains of mice. J Immunol 1978 ; 120 : 1616–1619. [PubMed] [Google Scholar]
  4. Haller O, Arnheiter H, Gresser I, Lindenmann J. Genetically determined, interferon-dependent resistance to influenza virus in mice. J Exp Med 1979 ; 149 : 601–612. [CrossRef] [PubMed] [Google Scholar]
  5. Müller U, Steinhoff U, Reis LF, et al. Functional role of type I and type II interferons in antiviral defense. Science 1994 ; 264 : 1918–1921. [Google Scholar]
  6. Durbin JE, Hackenmiller R, Simon MC, Levy DE. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 1996 ; 84 : 443–450. [CrossRef] [PubMed] [Google Scholar]
  7. Meraz MA, White JM, Sheehan KC, et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 1996 ; 84 : 431–442. [CrossRef] [PubMed] [Google Scholar]
  8. Dupuis S, Jouanguy E, Al-Hajjar S, et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet 2003 ; 33 : 388–391. [Google Scholar]
  9. Casanova JL. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci USA 2015 ; 112 : E7128–E7137. [Google Scholar]
  10. Kotenko SV, Gallagher G, Baurin VV, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 2003 ; 4 : 69–77. [CrossRef] [PubMed] [Google Scholar]
  11. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 1983 ; 158 : 670–689. [CrossRef] [PubMed] [Google Scholar]
  12. Manry J, Laval G, Patin E, et al. Evolutionary genetic dissection of human interferons. J Exp Med 2011 ; 208 : 2747–2759. [CrossRef] [PubMed] [Google Scholar]
  13. Gresser I, Morel-Maroger L, Rivière Y, et al. Interferon induced disease in mice and rats. Annals NY Acad Sci 1980 ; 350 : 12–20. [CrossRef] [Google Scholar]
  14. Gresser I, Tovey M, Maury C, Chouroulinkov I. Lethality of interferon preparations for new-born mice. Nature 1975 ; 258 : 76–78. [CrossRef] [PubMed] [Google Scholar]
  15. Gresser I, Morel-Maroger L, Maury C, et al. Progressive glomerulonephritis in mice treated with interferon preparations at birth. Nature 1976 ; 263 : 420–422. [CrossRef] [PubMed] [Google Scholar]
  16. Woodrow D, Moss J, Gresser I. Interferon induces pulmonary cysts in A2G mice. Proc Natl Acad Sci USA 1984 ; 81 : 7937–7940. [CrossRef] [Google Scholar]
  17. Rivière Y, Gresser I, Guillon JC, et al. Severity of LCM virus disease in different strains of suckling mice correlates with increasing amounts of endogenous interferon. J Exp Med 1980 ; 152 : 633–640. [CrossRef] [PubMed] [Google Scholar]
  18. Woodrow D, Ronco P, Rivière Y, et al. Severity of glomerulonephritis induced in different strains of suckling mice by infection with lymphocytic choriomeningitis virus: correlation with amounts of endogenous interferon and circulating immune complexes. J Pathol 1982 ; 138 : 325–336. [PubMed] [Google Scholar]
  19. Rivière Y, Gresser I, Guillon JC, Tovey MG. Inhibition by anti-interferon serum of lymphocytic choriomeningitis virus disease in suckling mice. Proc Natl Acad Sci USA 1977 ; 74 : 2135–2139. [CrossRef] [Google Scholar]
  20. Gresser I, Morel-Maroger L, Verroust P, et al. Anti-interferon globulin inhibits the development of glomerulonephritis in mice infected at birth with lymphocytic choriomeningitis virus. Proc Natl Acad Sci USA 1978 ; 75 : 3413–3416. [CrossRef] [Google Scholar]
  21. Fauconnier B.. Effect of an anti-interferon serum on experimental viral pathogenicity in vivo. Pathol Biol (Paris) 1971 ; 19 : 575–578. [PubMed] [Google Scholar]
  22. Lebon P, Girard S, Thépot F, Chany C. The presence of alpha-interferon in human amniotic fluid. J Gen Virol 1982 ; 59 : 393–396. [CrossRef] [PubMed] [Google Scholar]
  23. Duc-Goiran P, Lebon P, Chany C. Measurement of interferon in human amniotic fluid and placental blood extract. Methods Enzymol 1986 ; 119 : 541–551. [CrossRef] [PubMed] [Google Scholar]
  24. Pons JC, Lebon P, Frydman R, Delfraissy JF. Pharmacokinetics of interferon-alpha in pregnant women and fetoplacental passage. Fetal Diagn Ther 1995 ; 10 : 7–10. [CrossRef] [PubMed] [Google Scholar]
  25. Lebon P, Daffos F, Checoury A, et al. Presence of an acid-labile alpha-interferon in sera from fetuses and children with congenital rubella. J Clin Microbiol 1985 ; 21 : 775–778. [PubMed] [Google Scholar]
  26. Meritet JF, Krivine A, Lewin F, et al. A case of congenital lymphocytic choriomeningitis virus (LCMV) infection revealed by hydrops fetalis. Prenat Diagn 2009 ; 29 : 626–627. [Google Scholar]
  27. Dommergues M, Petitjean J, Aubry MC, et al. Fetal enteroviral infection with cerebral ventriculomegaly and cardiomyopathy. Fetal Diagn Ther 1994 ; 9 : 77–78. [CrossRef] [PubMed] [Google Scholar]
  28. Aicardi J, Goutieres FA. progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol 1984 ; 15 : 49–54. [CrossRef] [PubMed] [Google Scholar]
  29. Lebon P, Badoual J, Ponsot G, et al. Intrathecal synthesis of interferon-alpha in infants with progressive familial encephalopathy. J Neurol Sci 1988 ; 84 : 201–208. [CrossRef] [PubMed] [Google Scholar]
  30. Goutières F, Aicardi J, Barth PG, Lebon P. Aicardi-Goutières syndrome: an update and results of interferon-alpha studies. Ann Neurol 1998 ; 44 : 900–907. [CrossRef] [PubMed] [Google Scholar]
  31. Desanges C, Lebon P, Bauman C, et al. Elevated interferon-alpha in fetal blood in the prenatal diagnosis of Aicardi-Goutières syndrome. Fetal Diagn Ther 2006 ; 21 : 153–155. [CrossRef] [PubMed] [Google Scholar]
  32. Honigsberger L, Fielding JW, Priestman TJ. Neurological effects of recombinant human interferon. Br Med J 1983 ; 286 : 719. [Google Scholar]
  33. Smedley H, Katrak M, Sikora K, Wheeler T. Neurological effects of recombinant human interferon. Br Med J 1983 ; 286 : 262–264. [CrossRef] [PubMed] [Google Scholar]
  34. Campbell IL, Krucker T, Steffensen S, et al. Structural and functional neuropathology in transgenic mice with CNS expression of IFN-alpha. Brain Res 1999 ; 835 : 46–61. [CrossRef] [PubMed] [Google Scholar]
  35. Crow YJ. Type I interferonopathies a novel set of inborn errors of immunity. Ann NY Acad Sci 2011 ; 1238 : 91–98. [CrossRef] [Google Scholar]
  36. Skurkovich SV, Eremkina EI. The probable role of interferon in allergy. Ann Allergy 1975 ; 35 : 356–360. [PubMed] [Google Scholar]
  37. Hooks JJ, Moutsopoulos HM, Geis SA, et al. Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 1979 ; 301 : 5–8. [Google Scholar]
  38. Preble OT, Black RJ, Friedman RM, et al. Systemic lupuserythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science 1982 ; 216 : 429–431. [Google Scholar]
  39. Rich SA. Human lupus inclusions and interferon. Science 1981 ; 213 : 772–775. [Google Scholar]
  40. Lebon P, Lenoir GR, Fischer A, Lagrue A. Synthesis of intrathecal interferon in systemic lupus erythematosus with neurological complications. Br Med J 1983 ; 287 : 1165–1167. [CrossRef] [PubMed] [Google Scholar]
  41. Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003 ; 100 : 2610–2615. [CrossRef] [Google Scholar]
  42. Lee-Kirsch MA, Gong M, Chowdhury D, et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 2007 ; 39 : 1065–1067. [Google Scholar]
  43. An J, Briggs TA, Dumax-Vorzet A, Alarcón-Riquelme ME, et al. Tartrate-resistant acid phosphatase deficiency in the predisposition to systemic lupus erythematosus. Arthritis Rheumatol 2017 ; 69 : 131–142. [CrossRef] [PubMed] [Google Scholar]
  44. De Laet C, Goyens P, Christophe C, et al. Phenotypic overlap between infantile systemic lupus erythematosus and Aicardi-Goutières syndrome. Neuropediatrics 2005 ; 36 : 399–402. [CrossRef] [PubMed] [Google Scholar]
  45. Briggs TA, Rice GI, Daly S, et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 2011 ; 43 : 127–131. [Google Scholar]
  46. Briand C, Frémond ML, Bessis D, et al. Efficacy of JAK1/2 inhibition in thetreatment of chilblain lupus due to TREX1 deficiency. Ann Rheum Dis 2018 Oct 3. pii: annrheumdis-2018-214037. doi: 10.1136/annrheumdis-2018-214037. [Google Scholar]
  47. Rice GI, Meyzer C, Bouazza N, et al. Reverse transcriptase inhibitors in Aicardi-Goutières syndrome. N Engl J Med 2018 ; 379 : 2275–2277. [Google Scholar]
  48. Yockey LJ, Jurado KA, Arora N, et al. Type I interferons instigate fetal demise after Zika virus infection. Sci Immunol 2018; 3. pii: eaao1680. doi: 10.1126/sciimmunol.aao1680. [Google Scholar]
  49. Szaba FM, Tighe M, Kummer LW, et al. Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection. PLoS Pathog 2018 ; 14 : e1006994. [CrossRef] [PubMed] [Google Scholar]
  50. Casazza RL, Lazear HM. Antiviral immunity backfires: Pathogenic effects of type I interferon signaling in fetal development. Sci Immunol 2018; 3. pii: eaar3446. doi: 10.1126/sciimmunol.aar3446. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.