Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 3, Mars 2019
Page(s) 232 - 235
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019037
Publié en ligne 1 avril 2019
  1. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957 ; 147 : 258–267. [CrossRef] [PubMed] [Google Scholar]
  2. Isaacs A, Hitchchok G. Role of interferon in recovery from virus infections. Lancet 1960 ; 2 : 69–71. [CrossRef] [PubMed] [Google Scholar]
  3. Virelizier JL, Gresser I. Role of interferon in the pathogenesis of viral diseases of mice as demonstrated by the use of anti-interferon serum. V. Protective role in mouse hepatitis virus type 3 infection of susceptible and resistant strains of mice. J Immunol 1978 ; 120 : 1616–1619. [PubMed] [Google Scholar]
  4. Haller O, Arnheiter H, Gresser I, Lindenmann J. Genetically determined, interferon-dependent resistance to influenza virus in mice. J Exp Med 1979 ; 149 : 601–612. [CrossRef] [PubMed] [Google Scholar]
  5. Müller U, Steinhoff U, Reis LF, et al. Functional role of type I and type II interferons in antiviral defense. Science 1994 ; 264 : 1918–1921. [Google Scholar]
  6. Durbin JE, Hackenmiller R, Simon MC, Levy DE. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 1996 ; 84 : 443–450. [CrossRef] [PubMed] [Google Scholar]
  7. Meraz MA, White JM, Sheehan KC, et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 1996 ; 84 : 431–442. [CrossRef] [PubMed] [Google Scholar]
  8. Dupuis S, Jouanguy E, Al-Hajjar S, et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet 2003 ; 33 : 388–391. [Google Scholar]
  9. Casanova JL. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci USA 2015 ; 112 : E7128–E7137. [Google Scholar]
  10. Kotenko SV, Gallagher G, Baurin VV, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 2003 ; 4 : 69–77. [CrossRef] [PubMed] [Google Scholar]
  11. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 1983 ; 158 : 670–689. [CrossRef] [PubMed] [Google Scholar]
  12. Manry J, Laval G, Patin E, et al. Evolutionary genetic dissection of human interferons. J Exp Med 2011 ; 208 : 2747–2759. [CrossRef] [PubMed] [Google Scholar]
  13. Gresser I, Morel-Maroger L, Rivière Y, et al. Interferon induced disease in mice and rats. Annals NY Acad Sci 1980 ; 350 : 12–20. [CrossRef] [Google Scholar]
  14. Gresser I, Tovey M, Maury C, Chouroulinkov I. Lethality of interferon preparations for new-born mice. Nature 1975 ; 258 : 76–78. [CrossRef] [PubMed] [Google Scholar]
  15. Gresser I, Morel-Maroger L, Maury C, et al. Progressive glomerulonephritis in mice treated with interferon preparations at birth. Nature 1976 ; 263 : 420–422. [CrossRef] [PubMed] [Google Scholar]
  16. Woodrow D, Moss J, Gresser I. Interferon induces pulmonary cysts in A2G mice. Proc Natl Acad Sci USA 1984 ; 81 : 7937–7940. [CrossRef] [Google Scholar]
  17. Rivière Y, Gresser I, Guillon JC, et al. Severity of LCM virus disease in different strains of suckling mice correlates with increasing amounts of endogenous interferon. J Exp Med 1980 ; 152 : 633–640. [CrossRef] [PubMed] [Google Scholar]
  18. Woodrow D, Ronco P, Rivière Y, et al. Severity of glomerulonephritis induced in different strains of suckling mice by infection with lymphocytic choriomeningitis virus: correlation with amounts of endogenous interferon and circulating immune complexes. J Pathol 1982 ; 138 : 325–336. [PubMed] [Google Scholar]
  19. Rivière Y, Gresser I, Guillon JC, Tovey MG. Inhibition by anti-interferon serum of lymphocytic choriomeningitis virus disease in suckling mice. Proc Natl Acad Sci USA 1977 ; 74 : 2135–2139. [CrossRef] [Google Scholar]
  20. Gresser I, Morel-Maroger L, Verroust P, et al. Anti-interferon globulin inhibits the development of glomerulonephritis in mice infected at birth with lymphocytic choriomeningitis virus. Proc Natl Acad Sci USA 1978 ; 75 : 3413–3416. [CrossRef] [Google Scholar]
  21. Fauconnier B.. Effect of an anti-interferon serum on experimental viral pathogenicity in vivo. Pathol Biol (Paris) 1971 ; 19 : 575–578. [PubMed] [Google Scholar]
  22. Lebon P, Girard S, Thépot F, Chany C. The presence of alpha-interferon in human amniotic fluid. J Gen Virol 1982 ; 59 : 393–396. [CrossRef] [PubMed] [Google Scholar]
  23. Duc-Goiran P, Lebon P, Chany C. Measurement of interferon in human amniotic fluid and placental blood extract. Methods Enzymol 1986 ; 119 : 541–551. [CrossRef] [PubMed] [Google Scholar]
  24. Pons JC, Lebon P, Frydman R, Delfraissy JF. Pharmacokinetics of interferon-alpha in pregnant women and fetoplacental passage. Fetal Diagn Ther 1995 ; 10 : 7–10. [CrossRef] [PubMed] [Google Scholar]
  25. Lebon P, Daffos F, Checoury A, et al. Presence of an acid-labile alpha-interferon in sera from fetuses and children with congenital rubella. J Clin Microbiol 1985 ; 21 : 775–778. [PubMed] [Google Scholar]
  26. Meritet JF, Krivine A, Lewin F, et al. A case of congenital lymphocytic choriomeningitis virus (LCMV) infection revealed by hydrops fetalis. Prenat Diagn 2009 ; 29 : 626–627. [Google Scholar]
  27. Dommergues M, Petitjean J, Aubry MC, et al. Fetal enteroviral infection with cerebral ventriculomegaly and cardiomyopathy. Fetal Diagn Ther 1994 ; 9 : 77–78. [CrossRef] [PubMed] [Google Scholar]
  28. Aicardi J, Goutieres FA. progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol 1984 ; 15 : 49–54. [CrossRef] [PubMed] [Google Scholar]
  29. Lebon P, Badoual J, Ponsot G, et al. Intrathecal synthesis of interferon-alpha in infants with progressive familial encephalopathy. J Neurol Sci 1988 ; 84 : 201–208. [CrossRef] [PubMed] [Google Scholar]
  30. Goutières F, Aicardi J, Barth PG, Lebon P. Aicardi-Goutières syndrome: an update and results of interferon-alpha studies. Ann Neurol 1998 ; 44 : 900–907. [CrossRef] [PubMed] [Google Scholar]
  31. Desanges C, Lebon P, Bauman C, et al. Elevated interferon-alpha in fetal blood in the prenatal diagnosis of Aicardi-Goutières syndrome. Fetal Diagn Ther 2006 ; 21 : 153–155. [CrossRef] [PubMed] [Google Scholar]
  32. Honigsberger L, Fielding JW, Priestman TJ. Neurological effects of recombinant human interferon. Br Med J 1983 ; 286 : 719. [Google Scholar]
  33. Smedley H, Katrak M, Sikora K, Wheeler T. Neurological effects of recombinant human interferon. Br Med J 1983 ; 286 : 262–264. [CrossRef] [PubMed] [Google Scholar]
  34. Campbell IL, Krucker T, Steffensen S, et al. Structural and functional neuropathology in transgenic mice with CNS expression of IFN-alpha. Brain Res 1999 ; 835 : 46–61. [CrossRef] [PubMed] [Google Scholar]
  35. Crow YJ. Type I interferonopathies a novel set of inborn errors of immunity. Ann NY Acad Sci 2011 ; 1238 : 91–98. [CrossRef] [Google Scholar]
  36. Skurkovich SV, Eremkina EI. The probable role of interferon in allergy. Ann Allergy 1975 ; 35 : 356–360. [PubMed] [Google Scholar]
  37. Hooks JJ, Moutsopoulos HM, Geis SA, et al. Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 1979 ; 301 : 5–8. [Google Scholar]
  38. Preble OT, Black RJ, Friedman RM, et al. Systemic lupuserythematosus: presence in human serum of an unusual acid-labile leukocyte interferon. Science 1982 ; 216 : 429–431. [Google Scholar]
  39. Rich SA. Human lupus inclusions and interferon. Science 1981 ; 213 : 772–775. [Google Scholar]
  40. Lebon P, Lenoir GR, Fischer A, Lagrue A. Synthesis of intrathecal interferon in systemic lupus erythematosus with neurological complications. Br Med J 1983 ; 287 : 1165–1167. [CrossRef] [PubMed] [Google Scholar]
  41. Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci USA 2003 ; 100 : 2610–2615. [CrossRef] [Google Scholar]
  42. Lee-Kirsch MA, Gong M, Chowdhury D, et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 2007 ; 39 : 1065–1067. [Google Scholar]
  43. An J, Briggs TA, Dumax-Vorzet A, Alarcón-Riquelme ME, et al. Tartrate-resistant acid phosphatase deficiency in the predisposition to systemic lupus erythematosus. Arthritis Rheumatol 2017 ; 69 : 131–142. [CrossRef] [PubMed] [Google Scholar]
  44. De Laet C, Goyens P, Christophe C, et al. Phenotypic overlap between infantile systemic lupus erythematosus and Aicardi-Goutières syndrome. Neuropediatrics 2005 ; 36 : 399–402. [CrossRef] [PubMed] [Google Scholar]
  45. Briggs TA, Rice GI, Daly S, et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 2011 ; 43 : 127–131. [Google Scholar]
  46. Briand C, Frémond ML, Bessis D, et al. Efficacy of JAK1/2 inhibition in thetreatment of chilblain lupus due to TREX1 deficiency. Ann Rheum Dis 2018 Oct 3. pii: annrheumdis-2018-214037. doi: 10.1136/annrheumdis-2018-214037. [Google Scholar]
  47. Rice GI, Meyzer C, Bouazza N, et al. Reverse transcriptase inhibitors in Aicardi-Goutières syndrome. N Engl J Med 2018 ; 379 : 2275–2277. [Google Scholar]
  48. Yockey LJ, Jurado KA, Arora N, et al. Type I interferons instigate fetal demise after Zika virus infection. Sci Immunol 2018; 3. pii: eaao1680. doi: 10.1126/sciimmunol.aao1680. [Google Scholar]
  49. Szaba FM, Tighe M, Kummer LW, et al. Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection. PLoS Pathog 2018 ; 14 : e1006994. [CrossRef] [PubMed] [Google Scholar]
  50. Casazza RL, Lazear HM. Antiviral immunity backfires: Pathogenic effects of type I interferon signaling in fetal development. Sci Immunol 2018; 3. pii: eaar3446. doi: 10.1126/sciimmunol.aar3446. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.