Open Access
Numéro |
Med Sci (Paris)
Volume 35, Numéro 3, Mars 2019
|
|
---|---|---|
Page(s) | 223 - 231 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2019035 | |
Publié en ligne | 1 avril 2019 |
- Urh M, Simpson D, Zhao K. Affinity chromatography: general methods. Methods Enzymol 2009 ; 463 : 417–438. [CrossRef] [PubMed] [Google Scholar]
- ten Have S, Boulon S, Ahmad Y, Lamond AI. Mass spectrometry-based immuno-precipitation proteomics - the user’s guide. Proteomics 2011 ; 11 : 1153–1159. [CrossRef] [PubMed] [Google Scholar]
- Hein MY, Hubner NC, Poser I et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 2015 ; 163 : 712–723. [CrossRef] [PubMed] [Google Scholar]
- Ewing RM, Chu P, Elisma F et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 2007 ; 3 : 89. [Google Scholar]
- Huttlin EL, Bruckner RJ, Paulo JA et al. Architecture of the human interactome defines protein communities and disease networks. Nature 2017 ; 545 : 505–509. [CrossRef] [PubMed] [Google Scholar]
- Huttlin EL, Ting L, Bruckner RJ et al. The BioPlex network: a systematic exploration of the human interactome. Cell 2015 ; 162 : 425–440. [CrossRef] [PubMed] [Google Scholar]
- Gerace E, Moazed D. Affinity purification of protein complexes using TAP tags. Methods Enzymol 2015 ; 559 : 37–52. [CrossRef] [PubMed] [Google Scholar]
- Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature 1989 ; 340 : 245–246. [Google Scholar]
- Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci 2012 ; 33 : 109–118. [Google Scholar]
- Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000 ; 403 : 623–627. [CrossRef] [PubMed] [Google Scholar]
- Ito T, Chiba T, Ozawa R et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 2001 ; 98 : 4569–4574. [CrossRef] [Google Scholar]
- Tourette C, Li B, Bell R et al. A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease. J Biol Chem 2014 ; 289 : 6709–6726. [PubMed] [Google Scholar]
- Shahheydari H, Frost S, Smith BJ et al. Identification of PLP2 and RAB5C as novel TPD52 binding partners through yeast two-hybrid screening. Mol Biol Rep 2014 ; 41 : 4565–4572. [CrossRef] [PubMed] [Google Scholar]
- Huang H, Jedynak BM, Bader JS. Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comput Biol 2007 ; 3 : e214. [Google Scholar]
- Zhang J, Lautar S. A Yeast three-hybrid method to clone ternary protein complex components. Anal Biochem 1996 ; 242 : 68–72. [CrossRef] [PubMed] [Google Scholar]
- Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci USA 1994 ; 91 : 10340–10344. [CrossRef] [Google Scholar]
- Brückner A, Polge C, Lentze N et al. Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 2009 ; 10 : 2763–2788. [Google Scholar]
- Gingras A-C, Abe KT, Raught B. Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr Opin Chem Biol 2018 ; 48 : 44–54. [Google Scholar]
- Kim DI, Roux KJ. Filling the void: proximity-based labeling of proteins in living cells. Trends Cell Biol 2016 ; 26 : 804–817. [Google Scholar]
- Roux KJ, Kim DI, Raida M et al. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 2012 ; 196 : 801–810. [CrossRef] [PubMed] [Google Scholar]
- Kim DI, Kc B, Zhu W et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci USA 2014 ; 111 : E2453–E2461. [CrossRef] [Google Scholar]
- Couzens AL, Knight JDR, Kean MJ, et al. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal 2013; 6 : rs15. [Google Scholar]
- Gupta GD, Coyaud E, Gonçalves J et al. A Dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 2015 ; 163 : 1484–1499. [CrossRef] [PubMed] [Google Scholar]
- Kim BR, Coyaud E, Laurent EMN et al. Identification of the SOX2 interactome by BioID reveals EP300 as a mediator of SOX2-dependent squamous differentiation and lung squamous cell carcinoma growth. Mol Cell Proteomics 2017 ; 16 : 1864–1888. [CrossRef] [PubMed] [Google Scholar]
- Dingar D, Kalkat M, Chan PK et al. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. J Proteomics 2015 ; 118 : 95–111. [CrossRef] [PubMed] [Google Scholar]
- Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer 2008 ; 8 : 976–990. [Google Scholar]
- Kehrer J, Frischknecht F, Mair GR. Proteomic analysis of the Plasmodium berghei gametocyte egressome and vesicular bioID of osmiophilic body proteins identifies merozoite TRAP-like protein (MTRAP) as an essential factor for parasite transmission. Mol Cell Proteomics MCP 2016 ; 15 : 2852–2862. [CrossRef] [Google Scholar]
- Lin Q, Zhou Z, Luo W et al. Screening of proximal and interacting proteins in rice protoplasts by proximity-dependent biotinylation. Front Plant Sci 2017 ; 8 : 749. [CrossRef] [PubMed] [Google Scholar]
- Lampugnani ER, Wink RH, Persson S et al. The toolbox to study protein-protein interactions in plants. Crit Rev Plant Sci 2018 ; 1–27. [Google Scholar]
- Khan M, Youn JY, Gingras AC et al. In planta proximity dependent biotin identification (BioID). Sci Rep 2018 ; 8 : 9212. [CrossRef] [PubMed] [Google Scholar]
- Branon TC, Bosch JA, Sanchez AD et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 2018 ; 36 : 880–887. [CrossRef] [PubMed] [Google Scholar]
- Liu X, Salokas K, Tamene F et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat Commun 2018 ; 9 : 1188. [CrossRef] [PubMed] [Google Scholar]
- Schopp IM, Amaya Ramirez CC, Debeljak J et al. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nat Commun 2017 ; 8 : 15690. [CrossRef] [PubMed] [Google Scholar]
- De Munter S, Görnemann J, Derua R et al. Split-BioID: a proximity biotinylation assay for dimerization-dependent protein interactions. FEBS Lett 2017 ; 591 : 415–424. [CrossRef] [PubMed] [Google Scholar]
- Rhee H-W, Zou P, Udeshi ND et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 2013 ; 339 : 1328–1331. [Google Scholar]
- Lam SS, Martell JD, Kamer KJ et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 2015 ; 12 : 51–54. [CrossRef] [PubMed] [Google Scholar]
- Markmiller S, Soltanieh S, Server KL et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 2018 ; 172 : 590–04 e13. [CrossRef] [PubMed] [Google Scholar]
- Bersuker K, Peterson CWH, To M et al. A Proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev Cell 2018 ; 44 : 97–112 e7. [CrossRef] [PubMed] [Google Scholar]
- Chen CL, Hu Y, Udeshi ND et al. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase. Proc Natl Acad Sci USA 2015 ; 112 : 12093–12098. [CrossRef] [Google Scholar]
- Hung V, Zou P, Rhee H-W et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 2014 ; 55 : 332–341. [CrossRef] [PubMed] [Google Scholar]
- Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 2016 ; 11 : 2301–2319. [CrossRef] [PubMed] [Google Scholar]
- Choi H, Larsen B, Lin ZY et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods 2011 ; 8 : 70–73. [CrossRef] [PubMed] [Google Scholar]
- Söderberg O, Gullberg M, Jarvius M et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 2006 ; 3 : 995–1 000. [Google Scholar]
- Söderberg O, Leuchowius K-J, Gullberg M et al. Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods San Diego Calif 2008 ; 45 : 227–232. [CrossRef] [Google Scholar]
- Bobrich MA, Schwabe SA, Brobeil A et al. PTPIP51: a new interaction partner of the insulin receptor and PKA in adipose tissue. J Obes 2013 ; 2013 : 476240. [CrossRef] [PubMed] [Google Scholar]
- Poulard C, Treilleux I, Lavergne E et al. Activation of rapid oestrogen signalling in aggressive human breast cancers. EMBO Mol Med 2012 ; 4 : 1200–1213. [CrossRef] [PubMed] [Google Scholar]
- Smith MA, Hall R, Fisher K, et al. Annotation of human cancers with EGFR signaling-associated protein complexes using proximity ligation assays. Sci Signal 2015; 8 : ra4. [Google Scholar]
- Sekar RB, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 2003 ; 160 : 629–633. [CrossRef] [PubMed] [Google Scholar]
- Xu Y, Piston DW, Johnson CH. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci USA 1999 ; 96 : 151–156. [CrossRef] [Google Scholar]
- Couturier C, Deprez B. Setting up a bioluminescence resonance energy transfer high throughput screening assay to search for protein/protein interaction inhibitors in mammalian cells. Front Endocrinol 2012 ; 3 : 100. [CrossRef] [Google Scholar]
- Malovannaya A, Lanz RB, Jung SY et al. Analysis of the human endogenous coregulator complexome. Cell 2011 ; 145 : 787–799. [CrossRef] [PubMed] [Google Scholar]
- Rual JF, Venkatesan K, Hao T et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005 ; 437 : 1173–1178. [CrossRef] [PubMed] [Google Scholar]
- Stelzl U, Worm U, Lalowski M et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005 ; 122 : 957–968. [CrossRef] [PubMed] [Google Scholar]
- Vinayagam A, Stelzl U, Foulle R, et al. A directed protein interaction network for investigating intracellular signal transduction. Sci Signal 2011; 4 : rs8. [Google Scholar]
- Wang J, Huo K, Ma L et al. Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol 2011 ; 7 : 536. [Google Scholar]
- Rolland T, TaŞan M, Charloteaux B et al. A proteome-scale map of the human interactome network. Cell 2014 ; 159 : 1212–1226. [CrossRef] [PubMed] [Google Scholar]
- Lambert JP, Tucholska M, Go C et al. Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J Proteomics 2015 ; 118 : 81–94. [CrossRef] [PubMed] [Google Scholar]
- Mackmull MT, Klaus B, Heinze I et al. Landscape of nuclear transport receptor cargo specificity. Mol Syst Biol 2017 ; 13 : 962. [Google Scholar]
- Youn JY, Dunham WH, Hong SJ et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol Cell 2018 ; 69 : 517–32 e11. [CrossRef] [PubMed] [Google Scholar]
- Jing J, He L, Sun A et al. Proteomic mapping of ER-PM junctions identifies STIMATE as a regulator of Ca2+ influx. Nat Cell Biol 2015 ; 17 : 1339–1347. [CrossRef] [PubMed] [Google Scholar]
- Mick DU, Rodrigues RB, Leib RD et al. Proteomics of primary cilia by proximity labeling. Dev Cell 2015 ; 35 : 497–512. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.