Open Access
Issue
Med Sci (Paris)
Volume 35, Number 3, Mars 2019
Page(s) 245 - 251
Section Forum
DOI https://doi.org/10.1051/medsci/2019030
Published online 01 April 2019
  1. Sturtevant AH. Essays on evolution. I. On the effects of selection on mutation rate. Quart Rev. Biol 1937 ; 12 : 464–467. [CrossRef] [Google Scholar]
  2. Demerec M.. Genetic factors stimulating mutability of the miniature gamma wing character of Drosophila virilis. Proc Natl Acad Sci USA 1929 ; 15 : 834–838. [CrossRef] [Google Scholar]
  3. Demerec M.. Frequency of spontaneous mutations in certain stocks of Drosophila melanogaster. Genetics 1937 ; 22 : 469–478. [PubMed] [Google Scholar]
  4. Muller HJ. The measurement of gene mutation rate in Drosophila, its high variability, and its dependence upon temperature. Genetics 1928 ; 13 : 279–357. [PubMed] [Google Scholar]
  5. Sniegowski PD, Gerrish PJ, Johnson T, Shaver A. The evolution of mutation rates: separating causes from consequences. Bioessays 2000 ; 22 : 1057–1066. [CrossRef] [PubMed] [Google Scholar]
  6. Drake JW. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 1991 ; 88 : 7160–7164. [CrossRef] [Google Scholar]
  7. Drake JW. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA 1993 ; 90 : 4171–4175. [CrossRef] [Google Scholar]
  8. Sung W, Tucker AE, Doak TG, et al. Extraordinary genome stability in the ciliate Paramecium tetraurelia. Proc Natl Acad Sci USA 2012 ; 109 : 19339–19344. [CrossRef] [Google Scholar]
  9. Lynch M.. Evolution of the mutation rate. Trends Genet 2010 ; 26 : 345–352. [CrossRef] [PubMed] [Google Scholar]
  10. Eyre-Walker A, Keightley PD. The distribution of fitness effects of new mutations. Nat Rev Genet 2007 ; 8 : 610–618. [CrossRef] [PubMed] [Google Scholar]
  11. Robert L, Ollion J, Robert J, et al. Mutation dynamics and fitness effects followed in single cells. Science 2018 ; 359 : 1283–1286. [Google Scholar]
  12. Casane D, Laurenti P. Syllogomanie moléculaire: l’ADN non codant enrichit le jeu des possibles. Med Sci (Paris) 2014 ; 30 : 1177–1183. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. Charlesworth B.. Effective population size and patterns of molecular evolution and variation. Nat Rev Genet 2009 ; 10 : 195. [CrossRef] [PubMed] [Google Scholar]
  14. Lynch M, Ackerman MS, Gout JF, et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 2016 ; 17 : 704–714. [CrossRef] [PubMed] [Google Scholar]
  15. Quinones A, Piechocki R. Isolation and characterization of Escherichia coli antimutators. A new strategy to study the nature and origin of spontaneous mutations. Mol Gen Genet 1985 ; 201 : 315–322. [CrossRef] [PubMed] [Google Scholar]
  16. Loh E, Salk JJ, Loeb LA. Optimization of DNA polymerase mutation rates during bacterial evolution. Proc Natl Acad Sci USA 2010 ; 107 : 1154–1159. [CrossRef] [Google Scholar]
  17. Furio V, Moya A, Sanjuan R. The cost of replication fidelity in an RNA virus. Proc Natl Acad Sci USA 2005 ; 102 : 10233–10237. [CrossRef] [Google Scholar]
  18. Lloyd SB, Kent SJ, Winnall WR. The High Cost of Fidelity. AIDS Res Hum Retrovir 2014 ; 30 : 8–16. [CrossRef] [Google Scholar]
  19. Lynch M.. The lower bound to the evolution of mutation rates. Genome Biol Evol 2011 ; 3 : 1107–1118. [CrossRef] [PubMed] [Google Scholar]
  20. Sung W, Ackerman MS, Dillon MM, et al. Evolution of the insertion-deletion mutation rate across the tree of life. G3 (Bethesda) 2016; 6 : 2583–91. [CrossRef] [PubMed] [Google Scholar]
  21. Giraud A, Matic I, Tenaillon O, et al. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 2001 ; 291 : 2606–2608. [Google Scholar]
  22. Denamur E, Matic I. Evolution of mutation rates in bacteria. Mol Microbiol 2006 ; 60 : 820–827. [CrossRef] [PubMed] [Google Scholar]
  23. Denamur E, Lecointre G, Darlu P, et al. Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 2000 ; 103 : 711–721. [CrossRef] [PubMed] [Google Scholar]
  24. Labat F, Pradillon O, Garry L, et al. Mutator phenotype confers advantage in Escherichia coli chronic urinary tract infection pathogenesis. FEMS Immunol Med Microbiol 2005 ; 44 : 317–321. [Google Scholar]
  25. Taddei F, Radman M, MaynardSmith J, et al. Role of mutator alleles in adaptive evolution. Nature 1997 ; 387 : 700–702. [CrossRef] [PubMed] [Google Scholar]
  26. Tenaillon O, Toupance B, Le Nagard H, et al. Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics 1999 ; 152 : 485–493. [PubMed] [Google Scholar]
  27. Tanaka MM, Bergstrom CT, Levin BR. The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Genetics 2003 ; 164 : 843–854. [PubMed] [Google Scholar]
  28. Johnson T. Beneficial mutations, hitchhiking and the evolution of mutation rates in sexual populations. Genetics 1999 ; 151 : 1621–1631. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.