Open Access
Med Sci (Paris)
Volume 35, Number 2, Février 2019
Page(s) 132 - 137
Section M/S Revues
Published online 18 February 2019
  1. Leu AJ, Berk DA, Lymboussaki A, et al. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 2000 ; 60 : 4324–4327. [Google Scholar]
  2. Shayan R, Inder R, Karnezis T, et al. Tumor location and nature of lymphatic vessels are key determinants of cancer metastasis. Clin Exp Metastasis 2013 ; 30 : 345–356. [CrossRef] [PubMed] [Google Scholar]
  3. Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat 1902: 367–389. [Google Scholar]
  4. Huntington G, McClure C. The, anatomy and development of the jugular lymph sacs in the domestic cat (felis domestica). Am J Anat 1910 ; 10 : 178–310. [Google Scholar]
  5. Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 2002 ; 21 : 1505–1513. [PubMed] [Google Scholar]
  6. Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999 ; 98 : 769–778. [CrossRef] [PubMed] [Google Scholar]
  7. Wilting J, Papoutsi M, Schneider M, Christ B. The lymphatic endothelium of the avian wing is of somitic origin. Dev Dyn 2000 ; 217 : 271–278. [CrossRef] [PubMed] [Google Scholar]
  8. Ny A, Koch M, Schneider M, et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med 2005 ; 11 : 998–1004. [CrossRef] [PubMed] [Google Scholar]
  9. Yaniv K, Isogai S, Castranova D, et al. Live imaging of lymphatic development in the zebrafish. Nat Med 2006 ; 12 : 711–716. [CrossRef] [PubMed] [Google Scholar]
  10. Srinivasan RS, Dillard ME, Lagutin OV, et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 2007 ; 21 : 2422–2432. [CrossRef] [PubMed] [Google Scholar]
  11. Srinivasan RS, Oliver G. Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes Dev 2011 ; 25 : 2187–2197. [CrossRef] [PubMed] [Google Scholar]
  12. Religa P, Cao R, Bjorndahl M, et al. Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood 2005 ; 106 : 4184–4190. [Google Scholar]
  13. Irrthum A, Devriendt K, Chitayat D, et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet 2003 ; 72 : 1470–1478. [Google Scholar]
  14. You LR, Lin FJ, Lee CT, et al. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 2005 ; 435 : 98–104. [CrossRef] [PubMed] [Google Scholar]
  15. Lin FJ, Chen X, Qin J, et al. Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J Clin Invest 2010 ; 120 : 1694–1707. [CrossRef] [PubMed] [Google Scholar]
  16. Yamazaki T, Yoshimatsu Y, Morishita Y, et al. COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes Cells 2009 ; 14 : 425–434. [CrossRef] [PubMed] [Google Scholar]
  17. Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998 ; 282 : 946–949. [Google Scholar]
  18. Srinivasan RS, Escobedo N, Yang Y, et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev 2014 ; 28 : 2175–2187. [CrossRef] [PubMed] [Google Scholar]
  19. Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004 ; 5 : 74–80. [Google Scholar]
  20. Bower NI, Vogrin AJ, Le Guen L, et al. Vegfd modulates both angiogenesis and lymphangiogenesis during zebrafish embryonic development. Development 2017 ; 144 : 507–518. [PubMed] [Google Scholar]
  21. Duong T, Koltowska K, Pichol-Thievend C, et al. VEGFD regulates blood vascular development by modulating SOX18 activity. Blood 2014 ; 123 : 1102–1112. [Google Scholar]
  22. Koltowska K, Paterson S, Bower NI, et al. Mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes Dev 2015 ; 29 : 1618–1630. [CrossRef] [PubMed] [Google Scholar]
  23. Bos FL, Caunt M, Peterson-Maduro J, et al. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 2011 ; 109 : 486–491. [Google Scholar]
  24. Gordon EJ, Gale NW, Harvey NL. Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature; LYVE-1 is also expressed on embryonic blood vessels. Dev Dyn 2008 ; 237 : 1901–1909. [CrossRef] [PubMed] [Google Scholar]
  25. Gale NW, Prevo R, Espinosa J, et al. Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol 2007 ; 27 : 595–604. [PubMed] [Google Scholar]
  26. Pan Y, Xia L. Emerging roles of podoplanin in vascular development and homeostasis. Front Med 2015 ; 9 : 421–430. [CrossRef] [PubMed] [Google Scholar]
  27. Yang Y, Garcia-Verdugo JM, Soriano-Navarro M, et al. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood 2012 ; 120 : 2340–2348. [Google Scholar]
  28. Pan Y, Wang WD, Yago T. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvasc Res 2014 ; 94 : 96–102. [Google Scholar]
  29. Bertozzi CC, Schmaier AA, Mericko P, et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010 ; 116 : 661–670. [Google Scholar]
  30. Hess PR, Rawnsley DR, Jakus Z, et al. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J Clin Invest 2014 ; 124 : 273–284. [CrossRef] [PubMed] [Google Scholar]
  31. He Y, Rajantie I, Ilmonen M, et al. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 2004 ; 64 : 3737–3740. [Google Scholar]
  32. Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 2012 ; 31 : 4499–4508. [Google Scholar]
  33. Saharinen P, Tammela T, Karkkainen MJ, Alitalo K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol 2004 ; 25 : 387–395. [CrossRef] [PubMed] [Google Scholar]
  34. Farnsworth RH, Achen MG, Stacker SA. Lymphatic endothelium: an important interactive surface for malignant cells. Pulm Pharmacol Ther 2006 ; 19 : 51–60. [CrossRef] [PubMed] [Google Scholar]
  35. Dadras SS, Paul T, Bertoncini J, et al. Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 2003 ; 162 : 1951–1960. [CrossRef] [PubMed] [Google Scholar]
  36. Zhang XH, Huang DP, Guo GL, et al. Coexpression of VEGF-C and COX-2 and its association with lymphangiogenesis in human breast cancer. BMC Cancer 2008 ; 8 : 4. [CrossRef] [PubMed] [Google Scholar]
  37. Su JL, Shih JY, Yen ML, et al. Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res 2004 ; 64 : 554–564. [Google Scholar]
  38. Su JL, Yen CJ, Chen PS, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer 2007 ; 96 : 541–545. [CrossRef] [PubMed] [Google Scholar]
  39. Niederleithner H, Heinz M, Tauber S, et al. Wnt1 is anti-lymphangiogenic in a melanoma mouse model. J Invest Dermatol 2012 ; 132 : 2235–2244. [CrossRef] [PubMed] [Google Scholar]
  40. Caunt M, Mak J, Liang WC, et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 2008 ; 13 : 331–342. [CrossRef] [PubMed] [Google Scholar]
  41. Patel V, Marsh CA, Dorsam RT, et al. Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer. Cancer Res 2011 ; 71 : 7103–7112. [Google Scholar]
  42. Cao R, Ji H, Feng N, et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci USA 2012 ; 109 : 15894–15899. [CrossRef] [Google Scholar]
  43. Lund AW, Duraes FV, Hirosue S, et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 2012 ; 1 : 191–199. [CrossRef] [PubMed] [Google Scholar]
  44. Kataru RP, Kim H, Jang C, et al. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 2011 ; 34 : 96–107. [CrossRef] [PubMed] [Google Scholar]
  45. Fletcher AL, Malhotra D, Turley SJ. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol 2011 ; 32 : 12–18. [CrossRef] [PubMed] [Google Scholar]
  46. Tewalt EF, Cohen JN, Rouhani SJ, et al. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 2012 ; 120 : 4772–4782. [Google Scholar]
  47. Takahashi A, Kono K, Itakura J, et al. Correlation of vascular endothelial growth factor-C expression with tumor-infiltrating dendritic cells in gastric cancer. Oncology 2002 ; 62 : 121–127. [CrossRef] [PubMed] [Google Scholar]
  48. Fankhauser M, Broggi MAS, Potin L, et al. Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma. Sci Transl Med 2017; 9. [Google Scholar]
  49. Muchowicz A, Wachowska M, Stachura J, et al. Inhibition of lymphangiogenesis impairs antitumour effects of photodynamic therapy and checkpoint inhibitors in mice. Eur J Cancer 2017 ; 83 : 19–27. [CrossRef] [PubMed] [Google Scholar]
  50. Jaffredo T.. Origine veineuse des vaisseaux lymphatiques chez les mammifères : l’hypothèse de Sabin vérifiée. Med Sci (Paris) 2008 ; 24 : 567–569. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.