Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 2, Février 2019
Page(s) 132 - 137
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019002
Publié en ligne 18 février 2019
  1. Leu AJ, Berk DA, Lymboussaki A, et al. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 2000 ; 60 : 4324–4327. [Google Scholar]
  2. Shayan R, Inder R, Karnezis T, et al. Tumor location and nature of lymphatic vessels are key determinants of cancer metastasis. Clin Exp Metastasis 2013 ; 30 : 345–356. [CrossRef] [PubMed] [Google Scholar]
  3. Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat 1902: 367–389. [Google Scholar]
  4. Huntington G, McClure C. The, anatomy and development of the jugular lymph sacs in the domestic cat (felis domestica). Am J Anat 1910 ; 10 : 178–310. [Google Scholar]
  5. Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 2002 ; 21 : 1505–1513. [PubMed] [Google Scholar]
  6. Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999 ; 98 : 769–778. [CrossRef] [PubMed] [Google Scholar]
  7. Wilting J, Papoutsi M, Schneider M, Christ B. The lymphatic endothelium of the avian wing is of somitic origin. Dev Dyn 2000 ; 217 : 271–278. [CrossRef] [PubMed] [Google Scholar]
  8. Ny A, Koch M, Schneider M, et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med 2005 ; 11 : 998–1004. [CrossRef] [PubMed] [Google Scholar]
  9. Yaniv K, Isogai S, Castranova D, et al. Live imaging of lymphatic development in the zebrafish. Nat Med 2006 ; 12 : 711–716. [CrossRef] [PubMed] [Google Scholar]
  10. Srinivasan RS, Dillard ME, Lagutin OV, et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 2007 ; 21 : 2422–2432. [CrossRef] [PubMed] [Google Scholar]
  11. Srinivasan RS, Oliver G. Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes Dev 2011 ; 25 : 2187–2197. [CrossRef] [PubMed] [Google Scholar]
  12. Religa P, Cao R, Bjorndahl M, et al. Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood 2005 ; 106 : 4184–4190. [Google Scholar]
  13. Irrthum A, Devriendt K, Chitayat D, et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet 2003 ; 72 : 1470–1478. [Google Scholar]
  14. You LR, Lin FJ, Lee CT, et al. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 2005 ; 435 : 98–104. [CrossRef] [PubMed] [Google Scholar]
  15. Lin FJ, Chen X, Qin J, et al. Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J Clin Invest 2010 ; 120 : 1694–1707. [CrossRef] [PubMed] [Google Scholar]
  16. Yamazaki T, Yoshimatsu Y, Morishita Y, et al. COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction. Genes Cells 2009 ; 14 : 425–434. [CrossRef] [PubMed] [Google Scholar]
  17. Dumont DJ, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998 ; 282 : 946–949. [Google Scholar]
  18. Srinivasan RS, Escobedo N, Yang Y, et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev 2014 ; 28 : 2175–2187. [CrossRef] [PubMed] [Google Scholar]
  19. Karkkainen MJ, Haiko P, Sainio K, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004 ; 5 : 74–80. [CrossRef] [PubMed] [Google Scholar]
  20. Bower NI, Vogrin AJ, Le Guen L, et al. Vegfd modulates both angiogenesis and lymphangiogenesis during zebrafish embryonic development. Development 2017 ; 144 : 507–518. [PubMed] [Google Scholar]
  21. Duong T, Koltowska K, Pichol-Thievend C, et al. VEGFD regulates blood vascular development by modulating SOX18 activity. Blood 2014 ; 123 : 1102–1112. [Google Scholar]
  22. Koltowska K, Paterson S, Bower NI, et al. Mafba is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes Dev 2015 ; 29 : 1618–1630. [CrossRef] [PubMed] [Google Scholar]
  23. Bos FL, Caunt M, Peterson-Maduro J, et al. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 2011 ; 109 : 486–491. [Google Scholar]
  24. Gordon EJ, Gale NW, Harvey NL. Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature; LYVE-1 is also expressed on embryonic blood vessels. Dev Dyn 2008 ; 237 : 1901–1909. [CrossRef] [PubMed] [Google Scholar]
  25. Gale NW, Prevo R, Espinosa J, et al. Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol Cell Biol 2007 ; 27 : 595–604. [Google Scholar]
  26. Pan Y, Xia L. Emerging roles of podoplanin in vascular development and homeostasis. Front Med 2015 ; 9 : 421–430. [CrossRef] [PubMed] [Google Scholar]
  27. Yang Y, Garcia-Verdugo JM, Soriano-Navarro M, et al. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood 2012 ; 120 : 2340–2348. [Google Scholar]
  28. Pan Y, Wang WD, Yago T. Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvasc Res 2014 ; 94 : 96–102. [Google Scholar]
  29. Bertozzi CC, Schmaier AA, Mericko P, et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010 ; 116 : 661–670. [Google Scholar]
  30. Hess PR, Rawnsley DR, Jakus Z, et al. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J Clin Invest 2014 ; 124 : 273–284. [CrossRef] [PubMed] [Google Scholar]
  31. He Y, Rajantie I, Ilmonen M, et al. Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 2004 ; 64 : 3737–3740. [Google Scholar]
  32. Alitalo A, Detmar M. Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 2012 ; 31 : 4499–4508. [Google Scholar]
  33. Saharinen P, Tammela T, Karkkainen MJ, Alitalo K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol 2004 ; 25 : 387–395. [CrossRef] [PubMed] [Google Scholar]
  34. Farnsworth RH, Achen MG, Stacker SA. Lymphatic endothelium: an important interactive surface for malignant cells. Pulm Pharmacol Ther 2006 ; 19 : 51–60. [CrossRef] [PubMed] [Google Scholar]
  35. Dadras SS, Paul T, Bertoncini J, et al. Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 2003 ; 162 : 1951–1960. [CrossRef] [PubMed] [Google Scholar]
  36. Zhang XH, Huang DP, Guo GL, et al. Coexpression of VEGF-C and COX-2 and its association with lymphangiogenesis in human breast cancer. BMC Cancer 2008 ; 8 : 4. [CrossRef] [PubMed] [Google Scholar]
  37. Su JL, Shih JY, Yen ML, et al. Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Res 2004 ; 64 : 554–564. [Google Scholar]
  38. Su JL, Yen CJ, Chen PS, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer 2007 ; 96 : 541–545. [CrossRef] [PubMed] [Google Scholar]
  39. Niederleithner H, Heinz M, Tauber S, et al. Wnt1 is anti-lymphangiogenic in a melanoma mouse model. J Invest Dermatol 2012 ; 132 : 2235–2244. [CrossRef] [PubMed] [Google Scholar]
  40. Caunt M, Mak J, Liang WC, et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 2008 ; 13 : 331–342. [CrossRef] [PubMed] [Google Scholar]
  41. Patel V, Marsh CA, Dorsam RT, et al. Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer. Cancer Res 2011 ; 71 : 7103–7112. [Google Scholar]
  42. Cao R, Ji H, Feng N, et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci USA 2012 ; 109 : 15894–15899. [CrossRef] [Google Scholar]
  43. Lund AW, Duraes FV, Hirosue S, et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 2012 ; 1 : 191–199. [CrossRef] [PubMed] [Google Scholar]
  44. Kataru RP, Kim H, Jang C, et al. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 2011 ; 34 : 96–107. [CrossRef] [PubMed] [Google Scholar]
  45. Fletcher AL, Malhotra D, Turley SJ. Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol 2011 ; 32 : 12–18. [CrossRef] [PubMed] [Google Scholar]
  46. Tewalt EF, Cohen JN, Rouhani SJ, et al. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 2012 ; 120 : 4772–4782. [Google Scholar]
  47. Takahashi A, Kono K, Itakura J, et al. Correlation of vascular endothelial growth factor-C expression with tumor-infiltrating dendritic cells in gastric cancer. Oncology 2002 ; 62 : 121–127. [CrossRef] [PubMed] [Google Scholar]
  48. Fankhauser M, Broggi MAS, Potin L, et al. Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma. Sci Transl Med 2017; 9. [Google Scholar]
  49. Muchowicz A, Wachowska M, Stachura J, et al. Inhibition of lymphangiogenesis impairs antitumour effects of photodynamic therapy and checkpoint inhibitors in mice. Eur J Cancer 2017 ; 83 : 19–27. [CrossRef] [PubMed] [Google Scholar]
  50. Jaffredo T.. Origine veineuse des vaisseaux lymphatiques chez les mammifères : l’hypothèse de Sabin vérifiée. Med Sci (Paris) 2008 ; 24 : 567–569. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.