Open Access
Med Sci (Paris)
Volume 35, Number 2, Février 2019
Page(s) 123 - 131
Section M/S Revues
Published online 18 February 2019
  1. Williams H, Pembroke A. Sniffer dogs in the melanoma clinic ?. Lancet 1989 ; 1 : 734. [Google Scholar]
  2. Pomerantz A, Blachman-Braun R, Galnares-Olalde JA, et al. The possibility of inventing new technologies in the detection of cancer by applying elements of the canine olfactory apparatus. Med Hypotheses 2015 ; 85 : 160–172. [PubMed] [Google Scholar]
  3. Wilson AD. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath. Metabolites 2015 ; 5 : 140–163. [CrossRef] [PubMed] [Google Scholar]
  4. Das S, Pal S, Mitra M. Significance of exhaled breath test in clinical diagnosis: a special focus on the detection of diabetes mellitus. J Med Biol Eng 2016 ; 36 : 605–624. [PubMed] [Google Scholar]
  5. Pauwels EKJ, Foray N, Bourguignon MH. Breast cancer induced by X-Ray mammography screening? A review based on recent understanding of low-dose radiobiology. Med Princ Pract 2016 ; 25 : 101–109. [CrossRef] [PubMed] [Google Scholar]
  6. Pirrone F, Albertini M. Olfactory detection of cancer by trained sniffer dogs: a systematic review of the literature. J Vet Behav Clinical Applications and Research 2017 ; 19 : 105–117. [CrossRef] [Google Scholar]
  7. Ehmann R, Boedeker E, Friedrich U, et al. Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J 2012 ; 39 : 669–676. [CrossRef] [PubMed] [Google Scholar]
  8. Mgode GF, Cox CL, Mwimanzi S, et al. Pediatric tuberculosis detection using trained African giant pouched rats. Pediatr Res 2018 ; 84 : 99–103. [CrossRef] [PubMed] [Google Scholar]
  9. Poling A, Valverde E, Beyene Negussie P, et al. Active tuberculosis detection by pouched rats in, 2014: More than 2,000 new patients found in two countries. JABA 2017 : 50 165–169. [Google Scholar]
  10. Hackner K, Errhalt P, Mueller MR, et al. Canine scent detection for the diagnosis of lung cancer in a screening-like situation. J Breath Res 2016 ; 10 : 046003. [CrossRef] [PubMed] [Google Scholar]
  11. Bijland LR, Bomers MK, Smulders YM. Smelling the diagnosis: a review on the use of scent in diagnosing disease. Neth J Med 2013 ; 71 : 300–307. [PubMed] [Google Scholar]
  12. Wilson A, Baietto M. Applications and advances in electronic-nose technologies. Sensors 2009 ; 9 : 5099. [CrossRef] [Google Scholar]
  13. Mansurova M, Ebert BE, Blank LM, et al. A breath of information: the volatilome. Curr Genet 2018 ; 64 : 959–964. [CrossRef] [PubMed] [Google Scholar]
  14. Davis MD, Fowler SJ, Montpetit AJ. Exhaled breath testing. A tool for the clinician and researcher. Paediatr Resp Rev 2018; doi: 10.1016/j.prrv.2018.05.002. [Google Scholar]
  15. Doran S, Romano A, Hanna G. Optimisation of sampling parameters for standardised exhaled breath sampling. J Breath Res 2018 ; 12 : 01600. [Google Scholar]
  16. Lawal O, Ahmed WM, Nijsen TME, et al. Exhaled breath analysis: a review of breath-taking methods for off-line analysis. Metabolomics 2017 ; 13 : 110. [CrossRef] [PubMed] [Google Scholar]
  17. Konvalina G, Haick H. Effect of humidity on nanoparticle-based chemiresistors: a comparison between synthetic and real-world samples. ACS Appl Mater Interfaces 2012 ; 4 : 317–325. [Google Scholar]
  18. Blanchet L, Smolinska A, Baranska A, et al. Factors that influence the volatile organic compound content in human breath. J Breath Res 2017 ; 11 : 016013. [CrossRef] [PubMed] [Google Scholar]
  19. Coronel Teixeira R, Rodríguez M, Jiménez de Romero N, et al. The potential of a portable, point-of-care electronic nose to diagnose tuberculosis. J Infect 2017; 75 : 441–7. [CrossRef] [PubMed] [Google Scholar]
  20. Tisch U, Haick H. Arrays of chemisensitive monolayer-capped metallic nanoparticles for diagnostic breath testing. Rev Chem Eng 2010 ; 26 : 171–179. [CrossRef] [Google Scholar]
  21. Zhou J, Huang ZA, Kumar U, et al. Review of recent developments in determining volatile organic compounds in exhaled breath as biomarkers for lung cancer diagnosis. Anal Chim Acta 2017 ; 996 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  22. Phillips M, Cataneo RN, Cruz-Ramos JA, et al. Prediction of breast cancer risk with volatile biomarkers in breath. Breast Cancer Res Treat 2018 ; 170 : 343–350. [CrossRef] [PubMed] [Google Scholar]
  23. Phillips M, Beatty JD, Cataneo RN, et al. Rapid point-of-care breath test for biomarkers of breast cancer and abnormal mammograms. PLoS One 2014 ; 9 : e90226. [CrossRef] [PubMed] [Google Scholar]
  24. Tisch U, Schlesinger I, Ionescu R, et al. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine 2013 ; 8 : 43–56. [Google Scholar]
  25. Bach JP, Gold M, Menge D, et al. Measuring compounds in exhaled air to detect Alzheimer’s disease and Parkinson’s disease. PLoS One 2015 ; 10 : e0132227. [CrossRef] [PubMed] [Google Scholar]
  26. Mazzatenta A, Pokorski M, Sartucci F, et al. Volatile organic compounds (VOCs) fingerprint of Alzheimer’s disease. Respir Physiol Neurobiol 2015 ; 209 : 81–84. [CrossRef] [PubMed] [Google Scholar]
  27. Broza YY, Har-Shai L, Jeries R, et al. Exhaled breath markers for nonimaging and noninvasive measures for detection of multiple sclerosis. ACS Chem Neurosci 2017 ; 8 : 2402–2413. [CrossRef] [PubMed] [Google Scholar]
  28. Amy Scott-Thomas, Syhre M, Pattemore P, et al. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm Med 2010 ; 10 : 56. [CrossRef] [PubMed] [Google Scholar]
  29. Metters JP, Kampouris DK, Banks CE. Electrochemistry provides a point-of-care approach for the marker indicative of Pseudomonas aeruginosa infection of cystic fibrosis patients. Analyst 2014 ; 139 : 3999–4004. [CrossRef] [PubMed] [Google Scholar]
  30. Nakhleh MK, Amal H, Jeries R, et al. Diagnosis and classification of 17 diseases from 1404 subjects via pattern analysis of exhaled molecules. ACS Nano 2017 ; 11 : 112–125. [Google Scholar]
  31. Marenco L, Wang R, McDougal R, et al. ORDB, HORDE, ODORactor and other on-line knowledge resources of olfactory receptor-odorant interactions. Database (Oxford) 2016; 2016 : baw132. [CrossRef] [PubMed] [Google Scholar]
  32. Launay G, Teletchea S, Wade F, et al. Automatic modeling of mammalian olfactory receptors and docking of odorants. PEDS 2012 ; 25 : 377–386. [Google Scholar]
  33. Park TH. Bioelectronic nose. Integration of biotechnology and nanotechnology. Seoul : Springer, 2014 : 290 p. [Google Scholar]
  34. Dung TT, Oh Y, Choi SJ, et al. Applications and advances in bioelectronic noses for odour sensing. Sensors 2018 ; 18 : 103. [CrossRef] [Google Scholar]
  35. Benilova IV, Minic Vidic J, Pajot-Augy E, et al. Electrochemical study of human olfactory receptor OR 17–40 stimulation by odorants in solution. Mat Sci Eng C 2008 ; 28 : 633–639. [CrossRef] [Google Scholar]
  36. Manai R, Zadeh-Habchi M, Kamouni-Belghiti D, et al. Diamond micro-cantilevers as transducers for olfactory receptors-based biosensors: application to the receptors M71 and OR7D4. Sens Actuators B Chem 2017 ; 238 : 1199–1206. [Google Scholar]
  37. Lee SH, Jin HJ, Song HS, et al. Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. J Biotechnol 2012 ; 157 : 467–472. [CrossRef] [PubMed] [Google Scholar]
  38. Lee SH, Kwon OS, Song HS, et al. Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 2012 ; 33 : 1722–1729. [CrossRef] [PubMed] [Google Scholar]
  39. Kwon OS, Song HS, Park SJ, et al. An ultrasensitive, selective, multiplexed superbioelectronic nose that mimics the human sense of smell. Nano Lett 2015 ; 15 : 6559–6567. [CrossRef] [PubMed] [Google Scholar]
  40. Park SJ, Kwon Oh S, Lee SH, et al. Ultrasensitive flexible graphene-based field-effect transistor (FET)-type bioelectronic nose. Nano Lett 2012 ; 12 : 5082–5090. [Google Scholar]
  41. Mouret A, Lledo PM. Comment le nez se connecte au cerveau. Med Sci (Paris) 2007 ; 23 : 252–255. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.