Open Access
Med Sci (Paris)
Volume 35, Number 2, Février 2019
Page(s) 138 - 151
Section M/S Revues
Published online 18 February 2019
  1. Ford D, Easton DF, Stratton M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast cancer linkage consortium. Am J Hum Genet 1998 ; 62 : 676–689. [Google Scholar]
  2. Hall JM, Lee MK, Newman B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990 ; 250 : 1684–1689. [Google Scholar]
  3. Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994 ; 266 : 66–71. [Google Scholar]
  4. Wooster R, Neuhausen SL, Mangion J, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 1994 ; 265 : 2088–2090. [Google Scholar]
  5. D’Andrea AD, Grompe M. The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 2003 ; 3 : 23–34. [CrossRef] [PubMed] [Google Scholar]
  6. West SC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 2003 ; 4 : 435–445. [CrossRef] [PubMed] [Google Scholar]
  7. Howlett NG, Taniguchi T, Olson S, et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002 ; 297 : 606–609. [Google Scholar]
  8. Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 2006 ; 25 : 5864–5874. [Google Scholar]
  9. D’Andrea A.. Susceptibility pathways in Fanconi’s anemia and breast cancer. N Engl J Med 2010 ; 362 : 1909–1919. [CrossRef] [PubMed] [Google Scholar]
  10. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 2011 ; 12 : 68–78. [Google Scholar]
  11. Hakem R, de la Pompa JL, Sirard C, et al. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 1996 ; 85 : 1009–1023. [CrossRef] [PubMed] [Google Scholar]
  12. Patel KJ, Yu VP, Lee H, et al. Involvement of Brca2 in DNA repair. Mol Cell 1998 ; 1 : 347–357. [CrossRef] [PubMed] [Google Scholar]
  13. Liu J, Doty T, Gibson B, Heyer WD. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol 2010 ; 17 : 1260–1262. [CrossRef] [PubMed] [Google Scholar]
  14. Kinzler KW, Vogelstein B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 1997 ; 386 : 761–763. [CrossRef] [PubMed] [Google Scholar]
  15. Rosen EM, Fan S, Ma Y. BRCA1 regulation of transcription. Cancer Lett 2006 ; 236 : 175–185. [Google Scholar]
  16. Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971 ; 68 : 820–823. [CrossRef] [Google Scholar]
  17. Antoniou A, Pharoah PD, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 2003 ; 72 : 1117–1130. [Google Scholar]
  18. King MC, Marks JH, Mandell JB. New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 2003 ; 302 : 643–646. [Google Scholar]
  19. Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 2007 ; 25 : 1329–1333. [CrossRef] [PubMed] [Google Scholar]
  20. Rebbeck TR, Mitra N, Wan F, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 2015 ; 313 : 1347–1361. [CrossRef] [PubMed] [Google Scholar]
  21. Kuchenbaecker KB, McGuffog L, Barrowdale D, et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 2017 ; 109 : [Google Scholar]
  22. Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 2017 ; 317 : 2402–2416. [CrossRef] [PubMed] [Google Scholar]
  23. Klein AP. Genetic susceptibility to pancreatic cancer. Mol Carcinog 2012 ; 51 : 14–24. [CrossRef] [PubMed] [Google Scholar]
  24. Ginsburg OM, Kim-Sing C, Foulkes WD, et al. BRCA1 and BRCA2 families and the risk of skin cancer. Fam Cancer 2010 ; 9 : 489–493. [CrossRef] [PubMed] [Google Scholar]
  25. Couch FJ, Farid LM, DeShano ML, et al. BRCA2 germline mutations in male breast cancer cases and breast cancer families. Nat Genet 1996 ; 13 : 123–125. [Google Scholar]
  26. Kote-Jarai Z, Leongamornlert D, Saunders E, et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer 2011 ; 105 : 1230–1234. [CrossRef] [PubMed] [Google Scholar]
  27. Castro E, Goh C, Olmos D, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013 ; 31 : 1748–1757. [CrossRef] [PubMed] [Google Scholar]
  28. Cussenot O.. Management of prostate cancer: the new challenges. Presse Med 2017 ; 46 : 923–927. [CrossRef] [PubMed] [Google Scholar]
  29. Moran A, O’Hara C, Khan S, et al. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam Cancer 2012 ; 11 : 235–242. [CrossRef] [PubMed] [Google Scholar]
  30. Mersch J, Jackson MA, Park M, et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 2015 ; 121 : 269–275. [CrossRef] [PubMed] [Google Scholar]
  31. Eerola H, Heikkila P, Tamminen A, et al. Relationship of patients’age to histopathological features of breast tumours in BRCA1 and BRCA2 and mutation-negative breast cancer families. Breast Cancer Res 2005 ; 7 : R465–R469. [CrossRef] [PubMed] [Google Scholar]
  32. Chappuis PO, Nethercot V, Foulkes WD. Clinico-pathological characteristics of BRCA1- and BRCA2-related breast cancer. Semin Surg Oncol 2000 ; 18 : 287–295. [CrossRef] [PubMed] [Google Scholar]
  33. Lakhani SR, Gusterson BA, Jacquemier J, et al. The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. Clin Cancer Res 2000 ; 6 : 782–789. [PubMed] [Google Scholar]
  34. Foulkes WD, Stefansson IM, Chappuis PO, et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 2003 ; 95 : 1482–1485. [CrossRef] [PubMed] [Google Scholar]
  35. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med 2010 ; 363 : 1938–1948. [CrossRef] [PubMed] [Google Scholar]
  36. Mavaddat N, Pharoah PD, Blows F, et al. Familial relative risks for breast cancer by pathological subtype: a population-based cohort study. Breast Cancer Res 2010 ; 12 : R10. [CrossRef] [PubMed] [Google Scholar]
  37. Lakhani SR, Van De Vijver MJ, Jacquemier J, et al. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 2002 ; 20 : 2310–2318. [CrossRef] [PubMed] [Google Scholar]
  38. Bane AL, Beck JC, Bleiweiss I, et al. BRCA2 mutation-associated breast cancers exhibit a distinguishing phenotype based on morphology and molecular profiles from tissue microarrays. Am J Surg Pathol 2007 ; 31 : 121–128. [CrossRef] [PubMed] [Google Scholar]
  39. Agnarsson BA, Jonasson JG, Bjornsdottir IB, et al. Inherited BRCA2 mutation associated with high grade breast cancer. Breast Cancer Res Treat 1998 ; 47 : 121–127. [CrossRef] [PubMed] [Google Scholar]
  40. Palacios J, Robles-Frias MJ, Castilla MA, et al. The molecular pathology of hereditary breast cancer. Pathobiology 2008 ; 75 : 85–94. [CrossRef] [PubMed] [Google Scholar]
  41. Palacios J, Honrado E, Osorio A, et al. Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin Cancer Res 2003 ; 9 : 3606–3614. [PubMed] [Google Scholar]
  42. Copson ER, Maishman TC, Tapper WJ, et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): a prospective cohort study. Lancet Oncol 2018 ; 19 : 169–180. [CrossRef] [PubMed] [Google Scholar]
  43. Easton DF, Pharoah PD, Antoniou AC, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 2015 ; 372 : 2243–2257. [CrossRef] [PubMed] [Google Scholar]
  44. Buisson R, Dion-Cote AM, Coulombe Y, et al. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 2010 ; 17 : 1247–1254. [CrossRef] [PubMed] [Google Scholar]
  45. Buisson R, Niraj J, Pauty J, et al. Breast cancer proteins PALB2 and BRCA2 stimulate polymerase eta in recombination-associated DNA synthesis at blocked replication forks. Cell Rep 2014 ; 6 : 553–564. [CrossRef] [PubMed] [Google Scholar]
  46. Reid S, Schindler D, Hanenberg H, et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 2007 ; 39 : 162–164. [Google Scholar]
  47. Antoniou AC, Foulkes WD, Tischkowitz M. Breast-cancer risk in families with mutations in PALB2. N Engl J Med 2014 ; 371 : 1651–1652. [Google Scholar]
  48. Casadei S, Norquist BM, Walsh T, et al. Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res 2011 ; 71 : 2222–2229. [Google Scholar]
  49. Tischkowitz M, Capanu M, Sabbaghian N, et al. Rare germline mutations in PALB2 and breast cancer risk: a population-based study. Hum Mutat 2012 ; 33 : 674–680. [CrossRef] [PubMed] [Google Scholar]
  50. Erkko H, Dowty JG, Nikkila J, et al. Penetrance analysis of the PALB2 c.1592delT founder mutation. Clin Cancer Res 2008 ; 14 : 4667–4671. [CrossRef] [PubMed] [Google Scholar]
  51. Heikkinen T, Karkkainen H, Aaltonen K, et al. The breast cancer susceptibility mutation PALB2 1592delT is associated with an aggressive tumor phenotype. Clin Cancer Res 2009 ; 15 : 3214–3222. [CrossRef] [PubMed] [Google Scholar]
  52. Thompson ER, Rowley SM, Li N, et al. Panel testing for familial breast cancer: calibrating the tension between research and clinical care. J Clin Oncol 2016 ; 34 : 1455–1459. [CrossRef] [PubMed] [Google Scholar]
  53. Couch FJ, Shimelis H, Hu C, et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol 2017; 3 : 1190–6. [CrossRef] [PubMed] [Google Scholar]
  54. Buys SS, Sandbach JF, Gammon A, et al. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 2017 ; 123 : 1721–1730. [CrossRef] [PubMed] [Google Scholar]
  55. Tung N, Battelli C, Allen B, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer 2015 ; 121 : 25–33. [CrossRef] [PubMed] [Google Scholar]
  56. Castera L, Krieger S, Rousselin A, et al. Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet 2014 ; 22 : 1305–1313. [Google Scholar]
  57. Southey MC, Teo ZL, Dowty JG, et al. A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Res 2010 ; 12 : R109. [CrossRef] [PubMed] [Google Scholar]
  58. Southey MC, Goldgar DE, Winqvist R, et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet 2016 ; 53 : 800–811. [CrossRef] [PubMed] [Google Scholar]
  59. Ramus SJ, Song H, Dicks E, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst 2015 ; 107 : [Google Scholar]
  60. Rosenthal ET, Bernhisel R, Brown K, et al. Clinical testing with a panel of 25 genes associated with increased cancer risk results in a significant increase in clinically significant findings across a broad range of cancer histories. Cancer Genet 2017 ; 218–219 : 58–68. [CrossRef] [PubMed] [Google Scholar]
  61. Kurian AW, Ward KC, Hamilton AS, et al. Uptake, results, and outcomes of germline multiple-gene sequencing after diagnosis of breast cancer. JAMA Oncol 2018 ; 4 : 1066–1072. [PubMed] [Google Scholar]
  62. Cybulski C, Kluzniak W, Huzarski T, et al. Clinical outcomes in women with breast cancer and a PALB2 mutation: a prospective cohort analysis. Lancet Oncol 2015 ; 16 : 638–644. [CrossRef] [PubMed] [Google Scholar]
  63. Jones S, Hruban RH, Kamiyama M, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 2009 ; 324 : 217. [Google Scholar]
  64. Moretta-Serra J, Berthet P, Bonadona V, et al. Recommandation française pour l’analyse en panel de gènes dans la cadre de la prédisposition héréditaire au cancer du sein ou de l’ovaire. Quels gènes analyser ? Pour quelle utilité clinique ?. Bull Cancer 2018 ; 105 : 907–917. [CrossRef] [PubMed] [Google Scholar]
  65. Nelen MR, Padberg GW, Peeters EA, et al. Localization of the gene for Cowden disease to chromosome 10q22-23. Nat Genet 1996 ; 13 : 114–116. [Google Scholar]
  66. Hopkins BD, Parsons RE. Molecular pathways: intercellular PTEN and the potential of PTEN restoration therapy. Clin Cancer Res 2014 ; 20 : 5379–5383. [CrossRef] [PubMed] [Google Scholar]
  67. Uppal S, Mistry D, Coatesworth AP. Cowden disease: a review. Int J Clin Pract 2007 ; 61 : 645–652. [CrossRef] [PubMed] [Google Scholar]
  68. Pilarski R, Stephens JA, Noss R, et al. Predicting PTEN mutations: an evaluation of Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome clinical features. J Med Genet 2011 ; 48 : 505–512. [CrossRef] [PubMed] [Google Scholar]
  69. Schrager CA, Schneider D, Gruener AC, et al. Clinical and pathological features of breast disease in Cowden’s syndrome: an underrecognized syndrome with an increased risk of breast cancer. Hum Pathol 1998 ; 29 : 47–53. [CrossRef] [PubMed] [Google Scholar]
  70. Bubien V, Bonnet F, Brouste V, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet 2013 ; 50 : 255–263. [CrossRef] [PubMed] [Google Scholar]
  71. Ngeow J, Sesock K, Eng C. Breast cancer risk and clinical implications for germline PTEN mutation carriers. Breast Cancer Res Treat 2017 ; 165 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  72. Li FP, Fraumeni JF, Jr, Mulvihill JJ, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res 1988 ; 48 : 5358–5362. [Google Scholar]
  73. Bougeard G, Renaux-Petel M, Flaman JM, et al. Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 2015 ; 33 : 2345–2352. [CrossRef] [PubMed] [Google Scholar]
  74. Masciari S, Dillon DA, Rath M, et al. Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat 2012 ; 133 : 1125–1130. [CrossRef] [PubMed] [Google Scholar]
  75. Gonzalez KD, Noltner KA, Buzin CH, et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 2009 ; 27 : 1250–1256. [CrossRef] [PubMed] [Google Scholar]
  76. Li J, Meeks H, Feng BJ, et al. Targeted massively parallel sequencing of a panel of putative breast cancer susceptibility genes in a large cohort of multiple-case breast and ovarian cancer families. J Med Genet 2016 ; 53 : 34–42. [CrossRef] [PubMed] [Google Scholar]
  77. Guilford PJ, Hopkins JB, Grady WM, et al. E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Hum Mutat 1999 ; 14 : 249–255. [CrossRef] [PubMed] [Google Scholar]
  78. Huntsman DG, Carneiro F, Lewis FR, et al. Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. N Engl J Med 2001 ; 344 : 1904–1909. [CrossRef] [PubMed] [Google Scholar]
  79. Fitzgerald RC, Hardwick R, Huntsman D, et al. Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet 2010 ; 47 : 436–444. [CrossRef] [PubMed] [Google Scholar]
  80. Pharoah PD, Guilford P, Caldas C. International Gastric Cancer Linkage. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 2001 ; 121 : 1348–1353. [CrossRef] [PubMed] [Google Scholar]
  81. Benusiglio PR, Malka D, Rouleau E, et al. CDH1 germline mutations and the hereditary diffuse gastric and lobular breast cancer syndrome: a multicentre study. J Med Genet 2013 ; 50 : 486–489. [CrossRef] [PubMed] [Google Scholar]
  82. Hansford S, Kaurah P, Li-Chang H, et al. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol 2015 ; 1 : 23–32. [PubMed] [Google Scholar]
  83. Hemminki A, Tomlinson I, Markie D, et al. Localization of a susceptibility locus for Peutz-Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat Genet 1997 ; 15 : 87–90. [Google Scholar]
  84. Schumacher V, Vogel T, Leube B, et al. STK11 genotyping and cancer risk in Peutz-Jeghers syndrome. J Med Genet 2005 ; 42 : 428–435. [CrossRef] [PubMed] [Google Scholar]
  85. Giardiello FM, Brensinger JD, Tersmette AC, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 2000 ; 119 : 1447–1453. [CrossRef] [PubMed] [Google Scholar]
  86. Hearle N, Schumacher V, Menko FH, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res 2006 ; 12 : 3209–3215. [CrossRef] [PubMed] [Google Scholar]
  87. Beggs AD, Latchford AR, Vasen HF, et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut 2010 ; 59 : 975–986. [CrossRef] [PubMed] [Google Scholar]
  88. van Lier MG, Wagner A, Mathus-Vliegen EM, et al. High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol 2010 ; 105 : 1258–1264. [Google Scholar]
  89. Meindl A, Hellebrand H, Wiek C, et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 2010 ; 42 : 410–414. [Google Scholar]
  90. Song H, Dicks E, Ramus SJ, et al. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol 2015 ; 33 : 2901–2907. [CrossRef] [PubMed] [Google Scholar]
  91. Loveday C, Turnbull C, Ramsay E, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet 2011 ; 43 : 879–882. [Google Scholar]
  92. Sopik V, Akbari MR, Narod SA. Genetic testing for RAD51C mutations: in the clinic and community. Clin Genet 2015 ; 88 : 303–312. [CrossRef] [PubMed] [Google Scholar]
  93. Cohen-Haguenauer O. Quantification du risque individuel de cancer du sein chez la femme jeune. In: Anne Lesur BC, Jean-Pierre Bellocq, Béatrice Gairard, eds. La femme jeune face au cancer du sein. Actes de la 32e Journées de la Société Française de Sénologie et de Pathologie Mammaire, Strasbourg 2010 : 92–107. [Google Scholar]
  94. Bell DW, Varley JM, Szydlo TE, et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 1999 ; 286 : 2528–2531. [Google Scholar]
  95. Shieh SY, Ahn J, Tamai K, et al. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 2000 ; 14 : 289–300. [PubMed] [Google Scholar]
  96. Falck J, Mailand N, Syljuasen RG, et al. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001 ; 410 : 842–847. [CrossRef] [PubMed] [Google Scholar]
  97. Lee JS, Collins KM, Brown AL, et al. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 2000 ; 404 : 201–204. [CrossRef] [PubMed] [Google Scholar]
  98. Weischer M, Nordestgaard BG, Pharoah P, et al. CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer-specific death, and increased risk of a second breast cancer. J Clin Oncol 2012 ; 30 : 4308–4316. [CrossRef] [PubMed] [Google Scholar]
  99. Wang N, Ding H, Liu C, et al. A novel recurrent CHEK2 Y390C mutation identified in high-risk Chinese breast cancer patients impairs its activity and is associated with increased breast cancer risk. Oncogene 2015 ; 34 : 5198–5205. [Google Scholar]
  100. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995 ; 268 : 1749–1753. [Google Scholar]
  101. Cavaciuti E, Lauge A, Janin N, et al. Cancer risk according to type and location of ATM mutation in ataxia-telangiectasia families. Genes Chromosomes Cancer 2005 ; 42 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  102. Thompson D, Duedal S, Kirner J, et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 2005 ; 97 : 813–822. [CrossRef] [PubMed] [Google Scholar]
  103. Olsen JH, Hahnemann JM, Borresen-Dale AL, et al. Breast and other cancers in 1445 blood relatives of 75 Nordic patients with ataxia telangiectasia. Br J Cancer 2005 ; 93 : 260–265. [CrossRef] [PubMed] [Google Scholar]
  104. d’Almeida AK, Cavaciuti E, Dondon MG, et al. Increased risk of breast cancer among female relatives of patients with ataxia-telangiectasia: a causal relationship? Br J Cancer 2005; 93 : 730–2. [CrossRef] [PubMed] [Google Scholar]
  105. Renwick A, Thompson D, Seal S, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 2006 ; 38 : 873–875. [Google Scholar]
  106. Balleine RL, Murali R, Bilous AM, et al. Histopathological features of breast cancer in carriers of ATM gene variants. Histopathology 2006 ; 49 : 523–532. [CrossRef] [PubMed] [Google Scholar]
  107. Tavtigian SV, Oefner PJ, Babikyan D, et al. Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am J Hum Genet 2009 ; 85 : 427–446. [Google Scholar]
  108. Goldgar DE, Healey S, Dowty JG, et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res 2011 ; 13 : R73. [CrossRef] [PubMed] [Google Scholar]
  109. Chenevix-Trench G, Spurdle AB, Gatei M, et al. Dominant negative ATM mutations in breast cancer families. J Natl Cancer Inst 2002 ; 94 : 205–215. [CrossRef] [PubMed] [Google Scholar]
  110. Stankovic T, Kidd AM, Sutcliffe A, et al. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet 1998 ; 62 : 334–345. [Google Scholar]
  111. Roberts NJ, Jiao Y, Yu J, et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2012 ; 2 : 41–46. [CrossRef] [PubMed] [Google Scholar]
  112. Helgason H, Rafnar T, Olafsdottir HS, et al. Loss-of-function variants in ATM confer risk of gastric cancer. Nat Genet 2015 ; 47 : 906–910. [Google Scholar]
  113. Kurian AW, Hare EE, Mills MA, et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol 2014 ; 32 : 2001–2009. [CrossRef] [PubMed] [Google Scholar]
  114. De Nicolo A, Tancredi M, Lombardi G, et al. A novel breast cancer-associated BRIP1 (FANCJ/BACH1) germ-line mutation impairs protein stability and function. Clin Cancer Res 2008 ; 14 : 4672–4680. [CrossRef] [PubMed] [Google Scholar]
  115. Eisinger F, Bressac B, Castaigne D, et al. Identification and management of hereditary predisposition to cancer of the breast and the ovary (update 2004). Bull Cancer 2004 ; 91 : 219–237. [PubMed] [Google Scholar]
  116. Szabo C, Masiello A, Ryan JF, Brody LC. The breast cancer information core: database design, structure, and scope. Hum Mutat 2000 ; 16 : 123–131. [CrossRef] [PubMed] [Google Scholar]
  117. Beroud C, Letovsky SI, Braastad CD, et al. BRCA Share: a collection of clinical BRCA gene variants. Hum Mutat 2016 ; 37 : 1318–1328. [CrossRef] [PubMed] [Google Scholar]
  118. King MC, Marks JH, Mandell JB. New York Breast Cancer Study G. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 2003 ; 302 : 643–646. [Google Scholar]
  119. Muller D, Bonaiti-Pellie C, Abecassis J, et al. BRCA1 testing in breast and/or ovarian cancer families from northeastern France identifies two common mutations with a founder effect. Fam Cancer 2004 ; 3 : 15–20. [CrossRef] [PubMed] [Google Scholar]
  120. Plon SE, Eccles DM, Easton D, et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 2008 ; 29 : 1282–1291. [CrossRef] [PubMed] [Google Scholar]
  121. Spurdle AB, Healey S, Devereau A, et al. ENIGMA: evidence-based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum Mutat 2012 ; 33 : 2–7. [CrossRef] [PubMed] [Google Scholar]
  122. Rebbeck TR, Friebel TM, Friedman E, et al. Mutational spectrum in a worldwide study of 29,700 families with BRCA1 or BRCA2 mutations. Hum Mutat 2018 ; 39 : 593–620. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.