Free Access
Issue
Med Sci (Paris)
Volume 34, Number 10, Octobre 2018
Page(s) 813 - 819
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2018215
Published online 19 November 2018
  1. Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistanc against viruses in prokaryotes. Science 2007 ; 315 : 1709–1712. [CrossRef] [Google Scholar]
  2. Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987 ; 169 : 5429–5433. [CrossRef] [PubMed] [Google Scholar]
  3. Barrangou R. CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip Rev RNA 2013 ; 4 : 267–278. [CrossRef] [PubMed] [Google Scholar]
  4. Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005 ; 60 : 174–182. [CrossRef] [PubMed] [Google Scholar]
  5. Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 2017 ; 37 : 67–78. [CrossRef] [PubMed] [Google Scholar]
  6. Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008 ; 321 : 960–964. [CrossRef] [Google Scholar]
  7. Tremblay JP. CRISPR, un système qui permet de corriger ou de modifier l’expression de gènes responsables de maladies héréditaires. Med Sci (Paris) 2015 ; 31 : 1014–1022. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Garneau JE, Dupuis ME, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010 ; 468 : 67–71. [CrossRef] [PubMed] [Google Scholar]
  9. Nuñez JK, Lee ASY, Engelman A, et al. Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity. Nature 2015 ; 519 : 193–198. [CrossRef] [PubMed] [Google Scholar]
  10. Deveau H, Barrangou R, Garneau JE, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 2008 ; 190 : 1390–1400. [CrossRef] [PubMed] [Google Scholar]
  11. Mojica FJM, Díez-Villaseñor C, García-Martínez J, et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009 ; 155 : 733–740. [CrossRef] [PubMed] [Google Scholar]
  12. Hynes AP, Villion M, Moineau S. Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages. Nat Commun 2014 ; 5 : 467–477. [CrossRef] [Google Scholar]
  13. Hynes AP, Lemay M, Trudel L, et al. Detecting natural adaptation of the Streptococcus thermophilus CRISPR-Cas systems in research and classroom settings. Nat Protoc 2017 ; 12 : 547–565. [CrossRef] [PubMed] [Google Scholar]
  14. Hynes AP, Labrie SJ, Moineau S. Programming native CRISPR arrays for the generation of targeted immunity. MBio 2016 ; 7 : e00202–e00216. [CrossRef] [PubMed] [Google Scholar]
  15. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013 ; 339 : 823–826. [CrossRef] [PubMed] [Google Scholar]
  16. Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013 ; 152 : 1173–1183. [CrossRef] [PubMed] [Google Scholar]
  17. Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015 ; 33 : 510–517. [CrossRef] [PubMed] [Google Scholar]
  18. Yosef I, Manor M, Kiro R, et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA 2015 ; 112 : 7267–7272. [CrossRef] [Google Scholar]
  19. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013 ; 339 : 819–823. [CrossRef] [PubMed] [Google Scholar]
  20. Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016 ; 34 : 328–333. [CrossRef] [PubMed] [Google Scholar]
  21. Kim E, Koo T, Park SW, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 2017 ; 8 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  22. Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987 ; 51 : 919–928. [CrossRef] [PubMed] [Google Scholar]
  23. Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016 ; 351 : 403–407. [CrossRef] [PubMed] [Google Scholar]
  24. Bengtsson NE, Hall JK, Odom GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 2017 ; 8 : 14454. [CrossRef] [PubMed] [Google Scholar]
  25. Yang S, Chang R, Yang H, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. J Clin Invest 2017 ; 127 : 2719–2724. [CrossRef] [PubMed] [Google Scholar]
  26. Yin C, Zhang T, Qu X, et al. In Vivo Excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther 2017 ; 25 : 1168–1186. [CrossRef] [PubMed] [Google Scholar]
  27. Rauch BJ, Silvis MR, Hultquist JF, et al. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 2017 ; 168 : 150–158. [CrossRef] [PubMed] [Google Scholar]
  28. Hynes AP, Rousseau GM, Lemay ML, et al. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nat Microbiol 2017 ; 2 : 1374–1380. [CrossRef] [PubMed] [Google Scholar]
  29. Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature 2016 ; 539 : 479. [CrossRef] [PubMed] [Google Scholar]
  30. Reardon S. First CRISPR clinical trial gets green light from US panel. Nature 2016 ; 539 : 479. [CrossRef] [PubMed] [Google Scholar]
  31. Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015 ; 6 : 363–372. [CrossRef] [PubMed] [Google Scholar]
  32. Rho M, Wu YW, Tang H, et al. Diverse CRISPRs evolving in human microbiomes. PLoS Genet 2012 ; 8 : e1002441. [CrossRef] [PubMed] [Google Scholar]
  33. Hoe N, Nakashima K, Grigsby D, et al. Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg Infect Dis 1999 ; 5 : 254–263. [CrossRef] [PubMed] [Google Scholar]
  34. Shariat N, Dudley EG. CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 2014 ; 80 : 4309. [CrossRef] [Google Scholar]
  35. Shariat N, DiMarzio MJ, Yin S, et al. The combination of CRISPR-MVLST and PFGE provides increased discriminatory power for differentiating human clinical isolates of Salmonella enterica subsp. enterica serovar Enteritidis. Food Microbiol 2013 ; 34 : 164–173. [CrossRef] [Google Scholar]
  36. Zheng H, Hu Y, Li Q, et al. Subtyping Salmonella enterica serovar Derby with multilocus sequence typing (MLST) and clustered regularly interspaced short palindromic repeats (CRISPRs). Food Control 2017 ; 73 : 474–484. [CrossRef] [Google Scholar]
  37. Lück C, Brzuszkiewicz E, Rydzewski K, et al. Subtyping of the Legionella pneumophila “Ulm” outbreak strain using the CRISPR-Cas system. Int J Med Microbiol 2015 ; 305 : 828–837. [CrossRef] [PubMed] [Google Scholar]
  38. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature 2007 ; 449 : 804–810. [CrossRef] [PubMed] [Google Scholar]
  39. Pride DT, Sun CL, Salzman J, et al. Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res 2011 ; 21 : 126–136. [CrossRef] [PubMed] [Google Scholar]
  40. Stokes HW, Gillings MR, CW C, et al. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 2011 ; 35 : 790–819. [CrossRef] [PubMed] [Google Scholar]
  41. Saunders JR, Allison H, James CE, et al. Phage-mediated transfer of virulence genes. J Chem Technol Biotechnol 2001 ; 76 : 662–666. [CrossRef] [Google Scholar]
  42. Minot S, Sinha R, Chen J, et al. The human gut virome: Inter-individual variation and dynamic response to diet. Genome Res 2011 ; 21 : 1616–1625. [CrossRef] [PubMed] [Google Scholar]
  43. Van Belkum A, Soriaga LB, LaFave MC, et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. MBio 2015 ; 6 : 1–13. [CrossRef] [Google Scholar]
  44. La Gilgenkrantz H. révolution des CRISPR est en marche. Med Sci (Paris) 2014 ; 30 : 1066–1069. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Jordan B. Les débuts de CRISPR en thérapie génique. Med Sci (Paris) 2016 ; 32 : 1035–1037. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.